首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reinvestigated the question of maintenance of differential LHRH sensitivity in culture and further investigated the role of pulsatile LHRH in the in vitro release of pulsatile LH and FSH at different stages of the estrous cycle. Pituitaries were collected on each day of the 4 day cycle at 0800. In addition, pituitaries were also collected at 1500 and 1900 on proestrous. The cells were dispersed and exposed 48 hrs later to short duration 4 ng LHRH pulses; this dose was optimized for LH release and was applied at a frequency of 1 pulse/60 min. In terms of absolute magnitude of LH response, observed responsiveness was ranked in the following order: proestrous 1900 greater than estrous 0800 greater than diestrous 1 0800 greater than proestrous 1500 greater than diestrous 2 0800. Responsiveness was significantly greater at proestrous 1900 (p greater than 0.01), estrous 0800 (p greater than 0.05) and diestrous 1 0800 (p greater than 0.05) when compared to either of the other stages tested. The heightened LHRH sensitivity of proestrous was therefore maintained in cell culture indicating that the system should be valid for conducting studies on the control of gonadotropin secretion during this period. FSH did not respond in pulsatile manner to the LHRH levels employed further substantiating recent evidence that LHRH seems to function somehow less directly in FSH as compared to LH secretion.  相似文献   

2.
Hypothalamic regulation of luteinizing hormone (LH) secretion and ovarian function were investigated in beef heifers by infusing LH-releasing hormone (LHRH) in a pulsatile manner (1 microgram/ml; 1 ml during 1 min every h) into the external jugular vein of 10 hypophysial stalk-transected (HST) animals. The heifers were HST approximately 30 mo earlier. All heifers had increased ovarian size during the LHRH infusion. The maximum ovarian size (16 +/- 2.7 cm3) was greater (P less than 0.01) than the initial ovarian size (8 +/- 1.4 cm3). Ovarian follicular growth occurred in 4 of 10 HST heifers in response to pulsatile LHRH infusion. In 2 heifers, an ovarian follicle developed to preovulatory size, but ovulation occurred in only 1 animal after the frequency of LHRH was increased (1 microgram every 20 min during 8 h). In blood samples obtained at 20-min intervals every 5th day, LH concentrations in peripheral serum remained consistently low (0.9 ng/ml) and nonepisodic in the 10 HST heifers during infusion of vehicle on the day before beginning LHRH. In 7 of 10 HST animals, episodic LH secretion occurred in response to pulsatile infusion of LHRH. In 3 of these long-term HST heifers, however, serum LH remained at basal levels and the isolated pituitary seemingly was unresponsive to pulsatile infusion of LHRH as indicated by sequential patterns of gonadotropin secretion obtained at 5-day intervals. These results indicate that pulsatile infusion of LHRH induces LH release in HST beef heifers.  相似文献   

3.
Ten intact and hypophysial stalk-transected (HST), prepuberal Yorkshire gilts, 112–160 days old, were subjected to a pulsatile infusion regimen of luteinizing hormone-releasing hormone (LHRH) to investigate secretion profiles of luteinizing hormone (LH) and ovarian function. A catheter was implanted in a common carotid artery and connected to an infusion pump and recycling timer, whereas an indwelling external jugular catheter allowed collection of sequential blood samples for radioimmunoassay of LH and progesterone. In a dose response study, intracarotid injection of 5 μg LHRH induced peak LH release (5.9 ± 0.65 ng/ml; mean ± SE) within 20 min, which was greater (P < 0.001) than during the preinjection period (0.7 ± 0.65 ng/ml). After HST, 5 μg LHRH elicited LH release in only one of three prepuberal gilts. Four intact animals were infused with 5 μg LHRH (in 0.1% gel phosphate buffer saline, PBS) in 0.5-ml pulses (0.1 ml/min) at 1.5-h intervals continuously during 12 days. Daily blood samples were obtained at 20-min intervals 1 h before and 5, 10, 20, 40, 60 and 80 min after one LHRH infusion. Plasma LH release occurred in response to pulsatile LHRH infusion during the 12-day period; circulating LH during 60 min before onset of LHRH infusion was 0.7 ± 0.16 ng/ml compared with 1.3 ± 0.16 ng/ml during 60 min after onset of infusion (P < 0.001). Only one of four intact gilts ovulated, however, in response to LHRH infusion. This animal was 159 days old, and successive estrous cycles did not recur after LHRH infusion was discontinued. Puberal estrus occurred at 252 ± 7 days in these gilts and was confirmed by plasma progesterone levels. These results indicate that intracarotid infusion of 5 μg LHRH elicits LH release in the intact prepuberal gilt, but this dosage is insufficient to cause a consistent response after HST.  相似文献   

4.
Sexually mature rams were left intact, castrated (wethers), castrated and implanted with testosterone, or castrated, implanted with testosterone and pulse-infused every hour with LHRH. Serum concentrations of LH increased rapidly during the first week after castration and at 14 days had reached values of 13.1 +/- 2.2 ng/ml (mean +/- s.e.m.) and were characterized by a rhythmic, pulsatile pattern of secretion (1.6 +/- 0.1 pulses/h). Testosterone prevented the post-castration rise in serum LH in wethers (1.0 +/- 0.5 ng/ml; 0 pulses/h), but a castrate-type secretory pattern of LH was obtained when LHRH and testosterone were administered concurrently (10.7 +/- 0.8 ng/ml; 1.0 pulse/h). We conclude that the hypothalamus (rather than the pituitary) is a principal site for the negative feedback of androgen in rams and that an increased frequency of LHRH discharge into the hypothalamo-hypophysial portal system contributes significantly to the post-castration rise in serum LH.  相似文献   

5.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

6.
Negative feedback of estrogen was investigated in ovariectomized female guinea pigs. Two weeks after ovariectomy, indwelling catheters were inserted into the jugular vein, and 3 days later, blood samples were taken every 10 min to determine the pattern of luteinizing hormone (LH) secretion. LH secretion in these guinea pigs was episodic, with a mean pulse period of 32 min. The mean pulse amplitude was 2.1 ng/ml, with mean plasma LH levels of 1.8 ng/ml. Twenty-five micrograms 17 beta-estradiol (E2), given i.v., caused a pronounced inhibition of pulsatile LH release. Twenty-five microliters of 100% ethanol (vehicle) had no effect on plasma LH values. In a second set of experiments, ovariectomized female guinea pigs were given two injections of luteinizing hormone-releasing hormone (LHRH) (1 microgram/kg BW, i.v.) separated by 30 min. Sharp rises in serum LH values were detected after each injection. A third injection of LHRH was administered after an injection of either 25 micrograms E2 or 25 microliters vehicle. In the presence of E2, the LH response was significantly (p less than 0.005) diminished, whereas the vehicle did not change the LH response to LHRH. These rapid effects of E2 on LH secretion and the pituitary responsiveness to LHRH infusion indicate that in the ovariectomized guinea pig E2 can directly block gonadotropin secretion. These findings are consistent with the hypothesis that negative feedback actions of E2 are directly on the membrane of the gonadotrope.  相似文献   

7.
These experiments explored the mechanism underlying FSH hypersecretion on estrous afternoon in rats injected with RU486 (RU) on proestrus. Four-day cyclic rats were injected with RU at 12:00 h on proestrus (1 or 4 mg/0.2 ml oil; s.c.), and its effects on LH and FSH secretion at 18:30 h on estrus were compared with those of antiprogestagens ZK299 (ZK) (1 or 4 mg/0.2 ml oil; s.c.) and Org31806 (OR) (2 or 8 mg/0.2 ml oil; s.c.). Additionally, rats treated with RU or nembutal (PB) (60 mg/kg; i.p. at 13:00 h on proestrus) were injected with an LHRH antagonist (LHRHa) at 10:00 h on estrus (1 mg/0.2 ml saline; s.c.) or progesterone (P) (7.7, 15.5 or 30.9 mg/0.2 ml oil; s.c.) on proestrus at 10:00 h in RU-injected rats and at 14:00 h in PB-injected rats. Animals were killed by decapitation at 18:30 h on estrus and serum LH and FSH concentrations were determined. Rats treated with 1 or 4 mg of RU or Org or 4 mg of ZK recorded increased serum FSH on estrous afternoon, while 1 mg ZK had no effect. PB increased mainly serum LH levels and, to a lesser extent, FSH levels. P decreased serum FSH concentrations in both RU- and PB-injected rats. LHRHa reversed the effects of PB on FSH secretions, but reduced FSH hypersecretion induced by RU only. These results are interpreted to mean that, in the absence of proestrous afternoon P-inhibitory action of the neural stimulus controlling LHRH release, FSH secretion on estrous afternoon involves two components: one is LHRH dependent while, in contrast to LH secretion, the other is LHRH independent, and only expressed in a low estrogen background.  相似文献   

8.
To more completely assess the means by which alcohol impairs the female reproductive cycle in rats, we have measured hypothalamic luteinizing hormone-releasing hormone (LHRH), pituitary LHRH receptor content, and the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (Prl), and progesterone (P). After two successive cycles, the animals began receiving either an alcohol or a isocaloric control liquid diet regimen beginning on the first day of diestrus, with continued monitoring of the estrous cycle throughout the experiment. An additional set of controls consisted of animals maintained on lab chow and water provided ad libitum. Our results indicate that those animals receiving the control diets showed uninterrupted estrous patterns, whereas those animals receiving the alcohol diet remained in diestrus. Additionally, the alcohol-treated animals showed an increase (p less than 0.05) in LHRH content, with a concomitant decrease (p less than 0.01) in serum LH, and an increase (p less than 0.01) in serum Prl. No significant differences were detected in serum FSH levels or pituitary LHRH receptor content. No differences were detected in serum P levels. These results indicate that short-term alcohol administration disrupts the female reproductive cycle, causing persistent diestrus, and support our hypothesis that the alcohol-induced depression in serum LH levels is due to a diminished release rate of hypothalamic LHRH.  相似文献   

9.
Summary This study investigates the relationship between pituitary LHRH responsiveness and the depletion of LH in pubertal rats. The anterior pituitaries of 7-week-old rats of both sexes were stimulated for a maximum of 24 h with either a continuous, or pulsatile exposure to LHRH in vitro. Immunohistochemical examination revealed that most LH-cells in females became depleted of immunoreactive material, regardless of the mode of LHRH administration. In contrast, the majority of LH-cells in the male gland retained a strong immunostaining intensity. Radioimmunoassay showed that the initial pituitary LH content was significantly lower in the female rats (P< 0.001), but, even so, they released a higher percentage of stored LH in response to LHRH stimulation in vitro. A similar result was also obtained after a single injection of LHRH in vivo. Thus, the lower LH content and higher LHRH responsiveness of the female pituitary explain why LHRH treatment induced a pronounced LH depletion in this sex. These results are discussed in relation to available data on heightened LH secretion in maturing female rats.  相似文献   

10.
Concentrations of circulating LH were determined in conscious, free-moving ovariectomized rats. All of the animals had been ovariectomized at 24 days of age. Between 30 and 90 days there was an increase in mean blood LH concentrations; a more vigorous pulsatile release of LH characterized by an increase in amplitude and frequency of LH release; and an elevated responsiveness to LHRH administration. Rats which had been ovariectomized for 1 year still had elevated blood LH levels but had episodic pulses of reduced amplitude and a decrease in responsiveness to LHRH. These data suggest that important alterations occur with age in the neuroendocrine mechanisms responsible for the release of LH.  相似文献   

11.
Leydig cell function is driven by LH, secreted in a pulsatile manner by the anterior pituitary in response to episodic discharge of hypothalamic LHRH into the pituitary portal circulation, under control of a yet to be defined neural mechanism, the "hypothalamic LHRH pulse generator". The normal aging process in elderly men is accompanied by a decline in Leydig cell function. Whereas primary testicular factors undoubtedly play an important role in the decrease of circulating (free) testosterone levels with age, recent studies demonstrated that aging also affects the central compartment of the neuroendocrine cascade. Hypothalamic alterations comprise changes in the regulation of the frequency of the LHRH pulse generator with an inappropriately low frequency relative to the prevailing androgen impregnation and opioid tone, and with an increased sensitivity to retardation of the LHRH pulse generator by androgens. As observed by some authors in basal conditions and by others after endocrine manipulations. LH pulse amplitude seems also to be reduced in elderly men as compared to young subjects. This is most probably the consequence of a reduction in the amount of LHRH released by the hypothalamus. Indeed, challenge of the gonadotropes with low, close to physiological doses of LHRH in young and elderly men reveals no alterations in pituitary responsiveness when looking at either the response for immunoreactive LH or bioactive LH. Deconvolution analysis on data obtained after low-dose LHRH suggests a markedly prolonged plasma half-life of LH in elderly men, a finding which may explain the paradoxical increase of mean LH levels in face of the reduced or unchanged frequency and amplitude of LH pulses.  相似文献   

12.
The aim of this study was to investigate hormonal factors responsible for the huge increase in PRL receptors on the day of estrus in the rat mammary gland. For this purpose, ovariectomized rats were primed with E2 so as to reach a physiological serum concentration of E2 (21.5 +/- 1.2 pg/ml) and high PRL serum values (72.8 +/- 21.9 ng/ml). In these conditions, PRL specific binding and capacity were respectively 22.8 +/- 8.3%/mg protein and 96 +/- 29 fm/mg protein. An injection of either LHRH (500 ng/rat) or LH (60 micrograms LH-RP1/rat) was capable of increasing significantly both PRL specific binding and capacity. Capacity reached the values of 498 +/- 103 and 507 +/- 240 fm/mg protein for LHRH and LH respectively. LHRH action appeared to be mainly mediated through LH secretion, since no difference was found between LHRH and LH. LHRH and LH injections alone were unable to modify PRL binding, suggesting that they only potentiate E2 and PRL action. These results show for the first time that LH is involved in the regulation of PRL receptors in the rat mammary gland.  相似文献   

13.
The aim of the present study was to investigate the temporal relationship between the secretory pattern of serum LH and FSH concentrations and waves of ovarian antral follicles during the luteal phase of the estrous cycle in sheep. The growth pattern of ovarian antral follicles and CL were monitored by transrectal ultrasonography and gonadotropin concentrations were measured in blood samples collected every 12 min for 6 h/d from 7 to 14 d after ovulation. There were two follicular waves (penultimate and final waves of the cycle) emerging and growing during the period of intensive blood sampling. Mean and basal LH concentrations and LH pulse frequency increased (P < 0.001) with decreasing progesterone concentration at the end of the cycle. Mean and basal FSH concentrations reached a peak (P < 0.01) on the day of follicular wave emergence before declining to a nadir by 2 d after emergence. None of the parameters of pulsatile LH secretion varied significantly with either the emergence of the final follicular wave or with the end of the growth phase of the largest follicle of the penultimate wave of the cycle. However, mean and basal LH concentrations did increase (P < 0.05) after the end of the growth phase of the largest follicle of the final follicular wave of the cycle. Furthermore, the end of the growth phase of the largest follicle of the final wave coincided with functional luteolysis. In summary, there was no abrupt or short-term change in pulsatile LH secretion in association with the emergence or growth of the largest follicle of a wave. We concluded that the emergence and growth of ovarian antral follicles in follicular waves do not require changes in LH secretion, but may involve changes in sensitivity of ovarian follicles to serum LH concentrations.  相似文献   

14.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

15.
In a primary monolayer cell culture of the anterior pituitary from mature male rats the effects of exogenous rPrl (rPrl exog.) and endogenously secreted rPrl (rPrl endog.) on basal and LHRH stimulated LH secretion were investigated. In pilot studies basal Prl- and LH secretion as well as influence of various LHRH concentrations (10(-1)-10(+3) ng/ml) on Prl- and LH release were observed. The influence of exogenous rPrl was studied at various concentrations (50-500 ng/ml) and with preincubation periods of 2 hrs and 6 hrs before starting LHRH stimulation. The dopamine agonist bromocriptine and the dopamine antagonist sulpirid were preferentially used to prove physiologic function of the cell system presented. Basal LH secretion started after a delay of 3 hrs, whereas basal Prl secretion began immediately showing a linear rise for 9 hrs. LHRH stimulation resulted in a non-linear dose and time dependent LH secretion. LHRH showed no influence on endogenous Prl (rPrl endog.) secretion of the mammotroph cells. Exogenous Prl (rPrl exog.) did not affect spontaneous Prl release excluding ultra short loop inhibition in this cell system. Furthermore, exogenous Prl had no effect on either basal or LHRH stimulated LH secretion even after a preincubation period of up to 6 hrs and at concentrations generally observed for prolactin secreting tumors. Bromocriptine suppressed endogenous Prl release and did not affect LH secretion. Sulpirid had no influence on either Prl or LH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Neuroendocrine control of gonadotropin secretion   总被引:1,自引:0,他引:1  
Luteinizing hormone releasing hormone (LHRH), a hypothalmic peptide that is concentrated in granules of neurons, has the capacity to release gonadotropins (luteinizing hormone (LH) and follicle stimulating hormone) from the pituitary gland. LHRH has been found in hypophysial portal blood of rats, monkeys, and rabbits. Antibodies to LHRH depress plasma LH concentrations in castrated animals and evoke testicular atrophy, but passive immunization against LHRH does not block the LH surge induced by estrogen in monkeys. Estrogens, progestin, prolactin, and dopamine have marked effects on LH secretion, yet an association between these effects and altered hypophysial portal blood concentrations of LHRH is not established. In view of the paucity of evidence demonstrating such a cause and effect relationship, two alternative proposals have become tenable. One, hormones and neurotransmitters may not alter the levels of portal blood LHRH, but rather alter the frequency of pulsatile LHRH secretion. Two, hormones, such as estrogens, progesterone, and prolactin, may alter the responsiveness of the gonadotropin-secreting cells to LHRH by affecting the secretion of dopamine.  相似文献   

17.
Effect of time after castration on secretion of LHRH and LH in the ram   总被引:3,自引:0,他引:3  
Hypophysial portal blood and peripheral blood were obtained from conscious, unrestrained rams to measure simultaneously the secretion of LHRH and LH in entire rams and rams which had been castrated for 2-15 days (short-term castration) and for 1-6 months (long-term castration). The apparatus for portal blood collection was surgically implanted using a transnasal trans-sphenoidal approach and, 4-5 days later, portal blood and peripheral blood were collected simultaneously at 10-min intervals for 8-9 h from 15 sheep. LHRH was clearly secreted in pulses in all three physiological conditions, but there were marked differences in pulse frequencies, which averaged 1 pulse/2-4 h in entire rams, 1 pulse/70 min in short-term castrated rams and 1 pulse/36 min in long-term castrated rams. In entire and short-term castrated animals, LH profiles were also clearly pulsatile and each LHRH pulse in hypophysial portal blood was associated with an LH pulse in the peripheral blood. In long-term castrated animals, LH pulses were not as well defined, because of the high basal levels and small pulse amplitudes, and the temporal relationship between LHRH and LH pulses was not always clear. These results demonstrate the pulsatile nature of LHRH secretion under the three physiological conditions and suggest that the irregular LH profiles characteristic of long-term castrates are due to an inability of the pituitary gland to transduce accurately the hypothalamic signal. The very high frequency of the LHRH pulses may be one of the major reasons for this, and is probably also responsible for the high rate of LH secretion in the long-term castrated animal.  相似文献   

18.
Summary 1. Intact or ovariectomized (OVX) cyclic rats injected or not with RU486 (4 mg/0.2 ml oil) from proestrus onwards were bled at 0800 and 1800h on proestrus, estrus and metestrus. Additional RU486-treated rats were injected with: LHRH antagonist (LHRHa), estradiol benzoate (EB) or bovine follicular fluid (bFF) and sacrified at 1800 h in estrous afternoon. LH and FSH serum levels were determined by RIA.2. RU486-treated intact or OVX rats had decreased preovulatory surges of LH and FSH, abolished secondary secretion of FSH and hypersecretion of FSH in estrous afternoon. The latter was decreased by LHRHa and abolished by EB or bFF. In contrast, EB induced an hypersecretion of LH in RU486-treated rats at 1800h in estrus.3. It can be concluded that in the absence of the proestrous progesterone actions, the absence of the inhibitory effect of the ovary in estrus evoked a LHRH independent secretion of FSH.  相似文献   

19.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

20.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号