首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystem restoration conventionally focuses on ecological targets. However, while ecological targets are crucial to mobilizing political, social, and financial capital, they do not encapsulate the need to: integrate social, economic, and ecological dimensions and systems approaches; reconcile global targets and local objectives; and measure the rate of progress toward multiple and synergistic goals. Restoration is better conceived as an inclusive social-ecological process that integrates diverse values, practices, knowledge, and restoration objectives across temporal and spatial scales and stakeholder groups. Taking a more process-based approach will ultimately enable greater social-ecological transformation, greater restoration effectiveness, and more long-lasting benefits to people and nature across time and place.  相似文献   

2.
An environmental revolution is urgently needed that will lead to a post-industrial symbiosis between man and nature. This can be realized only if the present unrestrained biological impoverishment and neotechnological landscape degradation are replaced by the creation of healthy and attractive landscapes. Restorationists can fulfill a vital role in this process. They must broaden their scales from biodiversity restoration in small, protected nature islands to the large-scale restoration of natural and cultural landscapes. To achieve this they must restore not only the patterns of vegetation but also the processes that create these patterns, including human land uses. Their goal should be to restore the total biological, ecological, and cultural landscape diversity, or “ecodiversity,” and its intrinsic and instrumental values of highly valuable, endangered seminatural, agricultural and rural landscapes. For this purpose it is essential to maintain and restore the dynamic flow equilibrium between biodiversity, ecological, and cultural landscape heterogeneity, as influenced by human land uses, which occur at different spatial and temporal scales and intensities. Recent advances in landscape ecology should be utilized for broader assessment of ecodiversity, including proposed indices of ecodiversity, new techniques such as Intelligent Geographical Information Systems (IGIS), and Green Books for the holistic conservation and restoration of valuable endangered landscapes. Restoration ecology can make an important contribution to an urgently needed environmental revolution. This revolution should lead to a new symbiosis between man and nature by broadening the goal of vegetation restoration to ecological and cultural landscape restoration, and thereby to total landscape ecodiversity.  相似文献   

3.
A fundamental goal of ecological research is to understand and model how processes generate patterns so that if conditions change, changes in the patterns can be predicted. Different approaches have been proposed for modelling species assemblage, but their use to predict spatial patterns of species richness and other community attributes over a range of spatial and temporal scales remains challenging. Different methods emphasize different processes of structuring communities and different goals. In this review, we focus on models that were developed for generating spatially explicit predictions of communities, with a particular focus on species richness, composition, relative abundance and related attributes. We first briefly describe the concepts and theories that span the different drivers of species assembly. A combination of abiotic processes and biotic mechanisms are thought to influence the community assembly process. In this review, we describe four categories of drivers: (i) historical and evolutionary, (ii) environmental, (iii) biotic, and (iv) stochastic. We discuss the different modelling approaches proposed or applied at the community level and examine them from different standpoints, i.e. the theoretical bases, the drivers included, the source data, and the expected outputs, with special emphasis on conservation needs under climate change. We also highlight the most promising novelties, possible shortcomings, and potential extensions of existing methods. Finally, we present new approaches to model and predict species assemblages by reviewing promising ‘integrative frameworks’ and views that seek to incorporate all drivers of community assembly into a unique modelling workflow. We discuss the strengths and weaknesses of these new solutions and how they may hasten progress in community‐level modelling.  相似文献   

4.
Habitat-modifying organisms that impact other organisms and local functioning are important in determining ecosystem resilience. However, it is often unclear how the outcome of interactions performed by key species varies depending on the spatial and temporal disturbance context which makes the prediction of disturbance-driven regime shifts difficult. We investigated the strength and generality of effects of the filter feeding cockle Cerastoderma edule on its ambient intertidal benthic physical and biological environment. By comparing the magnitude of the effect of experimental cockle removal between a non-cohesive and a sheltered cohesive sediment in two different periods of the year, we show that the outcome of cockle interference effects relates to differences in physical disturbance, and to temporal changes in suspended sediment load and ontogenetic changes in organism traits. Interference effects were only present in the cohesive sediments, though the effects varied seasonally. Cockle presence decreased only the density of surface-dwelling species suggesting that interference effects were particularly mediated by bioturbation of the surface sediments. Furthermore, density reductions in the presence of cockles were most pronounced during the season when larvae and juveniles were present, suggesting that these life history stages are most vulnerable to interference competition. We further illustrate that cockles may enhance benthic microalgal biomass, most likely through the reduction of surface-dwelling grazing species, especially in periods with high sediment load and supposedly also high bioturbation rates. Our results emphasize that the physical disturbance of the sediment may obliterate biotic interactions, and that temporal changes in environmental stressors, such as suspended sediments, may affect the outcome of key species interference effects at the local scale. Consequently, natural processes and anthropogenic activities that change bed shear stress and sediment dynamics in coastal soft-sediment systems will affect cockle-mediated influences on ecosystem properties and therefore the resilience of these systems to environmental change.  相似文献   

5.
Traditionally, a scientific model is thought to provide a good scientific explanation to the extent that it satisfies certain scientific goals that are thought to be constitutive of explanation (e.g. generating understanding, identifying mechanisms, making predictions, identifying high-level patterns, allowing us to control and manipulate phenomena). Problems arise when we realize that individual scientific models cannot simultaneously satisfy all the scientific goals typically associated with explanation. A given model’s ability to satisfy some goals must always come at the expense of satisfying others. This has resulted in philosophical disputes regarding which of these goals are in fact necessary for explanation, and as such which types of models can and cannot provide explanations (e.g. dynamical models, optimality models, topological models, etc.). Explanatory monists argue that one goal will be explanatory in all contexts, while explanatory pluralists argue that the goal will vary based on pragmatic considerations. In this paper, I argue that such debates are misguided, and that both monists and pluralists are incorrect. Instead of any goal being given explanatory priority over others in a given context, the different goals are all deeply dependent on one another for their explanatory power. Any model that sacrifices some explanatory goals to attain others will always necessarily undermine its own explanatory power in the process. And so when forced to choose between individual scientific models, there can be no explanatory victors. Given that no model can satisfy all the goals typically associated with explanation, no one model in isolation can provide a good scientific explanation. Instead we must appeal to collections of models. Collections of models provide an explanation when they satisfy the web of interconnected goals that justify the explanatory power of one another.  相似文献   

6.
Linking ecological theory with stream restoration   总被引:3,自引:0,他引:3  
1. Faced with widespread degradation of riverine ecosystems, stream restoration has greatly increased. Such restoration is rarely planned and executed with inputs from ecological theory. In this paper, we seek to identify principles from ecological theory that have been, or could be, used to guide stream restoration. 2. In attempts to re‐establish populations, knowledge of the species’ life history, habitat template and spatio‐temporal scope is critical. In many cases dispersal will be a critical process in maintaining viable populations at the landscape scale, and special attention should be given to the unique geometry of stream systems 3. One way by which organisms survive natural disturbances is by the use of refugia, many forms of which may have been lost with degradation. Restoring refugia may therefore be critical to survival of target populations, particularly in facilitating resilience to ongoing anthropogenic disturbance regimes. 4. Restoring connectivity, especially longitudinal connectivity, has been a major restoration goal. In restoring lateral connectivity there has been an increasing awareness of the riparian zone as a critical transition zone between streams and their catchments. 5. Increased knowledge of food web structure – bottom‐up versus top‐down control, trophic cascades and subsidies – are yet to be applied to stream restoration efforts. 6. In restoration, species are drawn from the regional species pool. Having overcome dispersal and environmental constraints (filters), species persistence may be governed by local internal dynamics, which are referred to as assembly rules. 7. While restoration projects often define goals and endpoints, the succession pathways and mechanisms (e.g. facilitation) by which these may be achieved are rarely considered. This occurs in spite of a large of body of general theory on which to draw. 8. Stream restoration has neglected ecosystem processes. The concept that increasing biodiversity increases ecosystem functioning is very relevant to stream restoration. Whether biodiversity affects ecosystem processes, such as decomposition, in streams is equivocal. 9. Considering the spatial scale of restoration projects is critical to success. Success is more likely with large‐scale projects, but they will often be infeasible in terms of the available resources and conflicts of interest. Small‐scale restoration may remedy specific problems. In general, restoration should occur at the appropriate spatial scale such that restoration is not reversed by the prevailing disturbance regime. 10. The effectiveness and predictability of stream ecosystem restoration will improve with an increased understanding of the processes by which ecosystems develop and are maintained. Ideas from general ecological theory can clearly be better incorporated into stream restoration projects. This will provide a twofold benefit in providing an opportunity both to improve restoration outcomes and to test ecological theory.  相似文献   

7.
Mangrove Restoration: Do We Know Enough?   总被引:11,自引:0,他引:11  
Mangrove restoration projects have been attempted, with mixed results, throughout the world. In this paper, I first examine goals of existing mangrove restoration projects and determine whether these goals are clear and adequate, and whether or not they account for the full range of biological diversity and ecological processes of mangrove ecosystems. Many restored mangrove forests resemble forest plantations rather than truly integrated ecosystems, but mangrove plantations can be a first step toward mangrove rehabilitation. Mangrove restoration projects that involve associated aquaculture or mariculture operations tend to be more likely to approximate the biological diversity and ecological processes of undisturbed mangrove ecosystems than are projects that focus only on the trees. These integrated restoration projects also provide a higher economic return than do silvicultural projects alone. Second, I briefly assess whether existing ecological data are sufficient to undergird successful restoration of mangal and define criteria for determining whether or not a mangrove ecosystem has been restored successfully. These criteria include characteristics of vegetation (forest) structure, levels of primary production, composition of associated animal communities, and hydrology. Finally, I suggest ways to improve mangrove restoration projects and identify key research needs required to support these efforts. Ecological theories derived from other wetland and upland systems rarely have been applied to either “basic” or “applied” mangrove forest studies, to the detriment of restoration projects, whereas lessons from restoration of the relatively species‐poor mangrove ecosystems could be beneficially applied to restoration projects in other contexts. An international database of mangrove restoration projects would reduce the likelihood that unsuccessful restoration projects would be repeated elsewhere. Clear criteria for evaluating success, greater accessibility of information by managers in the developing world, intensified international cooperation, and application of relevant ecological theories will improve the success rate of mangrove restoration projects.  相似文献   

8.
Some Remarks on the Socio-Cultural Background of Restoration Ecology   总被引:2,自引:0,他引:2  
Restoration ecology plays an important role in nature conservation policy in Europe today. It establishes the scientific basis for restoring ecosystems altered or destroyed by man to a more “natural” state. The goals of restoration ecology can generally be described in terms of increased biodiversity, enhanced water retention capacity, avoidance of soil erosion, etc. In practice, however, a discrepancy exists between the high ideals of restoration goals and reality, where one often encounters limiting factors. These limiting factors can include the conflict between different restoration goals, the unpredictability of restoration goals owing to long‐term effects and stochastic events, the insufficient social acceptance of landscape changes during restoration processes, and the use of restoration processes themselves (e.g., undisturbed succession, certain management measures like impoverishment of fertilized areas) as restoration goals in place of a certain resource quality (such as species composition, population sizes, water quality). Two examples from southern Germany show that restoration goals in European cultural landscapes can only be implemented successfully when they are integrated into the respective land use systems.  相似文献   

9.
Plant communities are disturbed by several stressors and they are expected to be further impacted by increasing anthropogenic stress. The consequences of these stressors will depend, in part, upon the ability of plants to compensate for herbivory. Previous studies found that herbivore impacts on plants can vary from negative to positive because of environmental control of plant compensatory responses, a.k.a. the Compensatory Continuum Hypothesis. While these influential studies enhanced our appreciation of the dynamic nature of plant-herbivore interactions, they largely focused on the impact of resource limitation. This bias limits our ability to predict how other environmental factors will shape the impact of herbivory. We examined the role of salinity stress on herbivory of salt marsh cordgrass, Spartina foliosa, by an herbivore previously hypothesized to influence the success of restoration projects (the scale insect, Haliaspis spartinae). Using a combination of field and mesocosm manipulations of scales and salinity, we measured how these factors affected Spartina growth and timing of senescence. In mesocosm studies, Spartina overcompensated for herbivory by growing taller shoots at low salinities but the impact of scales on plants switched from positive to neutral with increasing salinity stress. In field studies of intermediate salinities, scales reduced Spartina growth and increased the rate of senescence. Experimental salinity additions at this field site returned the impact of scales to neutral. Because salinity decreased scale densities, the switch in impact of scales on Spartina with increasing salinity was not simply a linear function of scale abundance. Thus, the impact of scales on primary production depended strongly upon environmental context because intermediate salinity stress prevented plant compensatory responses to herbivory. Understanding this context-dependency will be required if we are going to successfully predict the success of restoration efforts and the ecological consequences of anthropogenic disturbances.  相似文献   

10.
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water‐resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape‐scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi‐scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.  相似文献   

11.
Exotic species have become increasingly significant management problems in parks and reserves and frequently complicate restoration projects. At the same time there may be circumstances in which their removal may have unforeseen negative consequences or their use in restoration is desirable. We review the types of effects exotic species may have that are important during restoration and suggest research that could increase our ability to set realistic management goals. Their control and use may be controversial; therefore we advocate consideration of exotic species in the greater context of community structure and succession and emphasize areas where ecological research could bring insight to management dilemmas surrounding exotic species and restoration. For example, an understanding of the potential transience of exotics in a site and the role particular exotics might play in changing processes that influence the course of succession is essential to setting removal priorities and realistic management goals. Likewise, a greater understanding of the ecological role of introduced species might help to reduce controversy surrounding their purposeful use in restoration. Here we link generalizations emerging from the invasion ecology literature with practical restoration concerns, including circumstances when it is practical to use exotic species in restoration.  相似文献   

12.
Abstract Dynamic numerical models and field experiments play important roles in impact assessment and management. Unfortunately, extreme and simplistic views have developed about whether and how to use these tools, so their complementary values to the manager are often not recognized. We often hear the outrageous claim (or hope) that numerical models can synthesize ‘all’ relevant information for predicting the impact of policy choice, hence making experimental experience unnecessary. From experimentalists, we hear the equally naive criticism that ecological systems are so complex that nothing is predictable without experimental experience. What we usually get from the proponents of these extremes are either models that are dangerously unreliable, or experiments that provide nice scientific answers to the wrong questions. Wise use of modelling begins with the following points: (i) explicit modelling is an excellent way to clarify policy concerns and identify processes that are most likely to be important in making predictions about policy effects; (ii) we can do a very good job of modelling some processes and relationships, particularly those having to do with basic spatial and temporal scales of impact as related to physical transport, chemical transformations, and life history characteristics of indicator populations (longevity, delays and response times due to age structured rates of reproduction and mortality); and (iii) there are some important dynamic processes, such as long-term accumulation of toxic materials in the environment, that unfold over such large space and time scales as to preclude direct experimental study (leaving only the issue of which models to use in making predictions, not whether to model - unless the processes are simply ignored). But points (i) and (ii) represent steps that a good experimentalist will take anyway: be clear about what practical results an experiment is intended to produce, and do not waste effort on experiments to measure things that can be predicted reliably from existing knowledge. The key to successful use of modelling and experimentation in management is in making good judgements about the interface between points (ii) and (iii); that is, in making good judgements about both what variables cannot be reliably predicted, and of these, which to treat experimentally and which to gamble on predicting from models.  相似文献   

13.
de Jonge  V.N.  de Jong  D.J. 《Hydrobiologia》2002,478(1-3):7-28
This chapter gives an overview of attempts in the Netherlands to restore coastal ecosystems and habitats, and explains how scientific and non-scientific information has been used to meet the goals. Indications for successes and failures of management measures taken so far, as well as dilemmas to cope with, are given. Up to now only small scale restoration projects have been executed, while large scale projects generally are not further then the thinking or planning phase. A special type of `restoration projects' are the large civil engineering works, particularly in the south-west of the Netherlands. Although these works were not planned and executed as restoration projects, but designed for safety against flooding from the sea, they have led to significant changes in the boundary conditions of the systems concerned. For restoration projects yet to be executed one can learn very much from these developments, particularly regarding the sensitivity of coastal systems for changes in boundary conditions and about the (im)possibilities to `steer' ecological developments. Physical, chemical and biological processes form the basis of restoration measures of coastal habitats, and this means that a thorough knowledge of these processes is essential. Coastal ecosystems are the result of complex interactions of large-scale and small-scale processes, implying a holistic approach in scientific investigations. Consequently, restoration of these systems primarily has to be realised by influencing the basic processes. This is the only way to preserve or regain in a sustainable way ecological values, such as species composition. Focusing only at one particular species (e.g. breeding terns) or a specific habitat (e.g. a salt marsh) may easily ignore the underlying processes. In general, coastal restoration should focus on the redirection of processes towards a desired status by stimulating certain process parameters. Monitoring of the results and, if necessary, gradual readjustment of the governing factors, is an essential part of this approach.  相似文献   

14.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

15.
Over the last few decades it has become increasingly obvious that disturbance, whether natural or anthropogenic in origin, is ubiquitous in ecosystems. Disturbance-related processes are now considered to be important determinants of the composition, structure and function of ecological systems. However, because disturbance and succession processes occur across a wide range of spatio-temporal scales their empirical investigation is difficult. To counter these difficulties much use has been made of spatial modelling to explore the response of ecological systems to disturbance(s) occurring at spatial scales from the individual to the landscape and above, and temporal scales from minutes to centuries. Here we consider such models by contrasting two alternative motivations for their development and use: prediction and exploration, with a focus on forested ecosystems. We consider the two approaches to be complementary rather than competing. Predictive modelling aims to combine knowledge (understanding and data) with the goal of predicting system dynamics; conversely, exploratory models focus on developing understanding in systems where uncertainty is high. Examples of exploratory modelling include model-based explorations of generic issues of criticality in ecological systems, whereas predictive models tend to be more heavily data-driven (e.g. species distribution models). By considering predictive and exploratory modelling alongside each other, we aim to illustrate the range of methods used to model succession and disturbance dynamics and the challenges involved in the model-building and evaluation processes in this arena.  相似文献   

16.
Human-carnivore systems are built on multi-scalar complex processes often resulting in conflicts that force wildlife managers to address what are conceived as problem individuals. In North America, the grizzly bear (Ursus arctos) is often involved in human-bear conflict with management measures such as translocations, in which problem individuals are moved to new areas, being used to reduce conflict risk. While translocations offer a non-lethal alternative to managing conflict animals, they show varying levels of success. Our objective was to perform a novel assessment of grizzly bear translocation success through agent-based simulation by evaluating how familiarity with landscape features coupled with behavioral traits affects the way individuals use resources in a new environment. Our results showed that bears translocated to familiar habitat used high-quality habitat more than bears moved to areas with unfamiliar landscape characteristics. Increased exploration led to greater use of high-quality habitat in the long run but resulted in reduced use of high-quality habitat during the first two years following a translocation. Habitat quality use depended on scale, with bears translocated to less familiar environments accessing higher quality areas at a finer scale than bears translocated to familiar habitats. We emphasize the need to account for wildlife behavioral traits and habitat characteristics at multiple scales when selecting suitable translocation locations. Understanding the role of factors such as these on translocation outcome will help ensure the success of translocations not only as a method for managing problem wildlife, but also for population restoration, species reestablishment, and conservation translocations across the globe.  相似文献   

17.
A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out from an empirical perspective and in specific ecological settings or contexts. Belowground interactions operate at different spatial and temporal scales. Due to the relatively low mobility and high survival of organisms in the soil, plants have longer lasting legacy effects belowground than aboveground. Our current challenge is to understand how aboveground–belowground biotic interactions operate across spatial and temporal scales, and how they depend on, as well as influence, the abiotic environment. Because empirical capacities are too limited to explore all possible combinations of interactions and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground–belowground approach offers perspectives for enhancing ecological understanding, namely succession, agro-ecosystems, biological invasions and global change impacts on ecosystems. In plant succession, differences in scales between aboveground and belowground biota, as well as between species interactions and ecosystem processes, have important implications for the rate and direction of community change. Aboveground as well as belowground interactions either enhance or reduce rates of plant species replacement. Moreover, the outcomes of the interactions depend on abiotic conditions and plant life history characteristics, which may vary with successional position. We exemplify where translation of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects of global change on community re-organisation and ecosystem processes.  相似文献   

18.
19.
We discuss aspects of one of the most important issues in ecological restoration: how to evaluate restoration success. This first requires clearly stated and justified restoration goals and targets; this may seem “obvious” but in our experience, this step is often elided. Indicators or proxy variables are the typical vehicle for monitoring; these must be justified in the context of goals and targets and ultimately compared against those to allow for an evaluation of outcome (e.g. success or failure). The monitoring phase is critical in that a project must consider how the monitoring frequency and overall design will allow the postrestoration trajectories of indicators to be analyzed. This allows for real‐time management adjustments—adaptive management (sensu lato)—to be implemented if the trajectories are diverging from the targets. However, as there may be large variation in early postrestoration stages or complicated (nonlinear) trajectory, caution is needed before committing to management adjustments. Ideally, there is not only a goal and target but also a model of the expected trajectory—that only can occur if there are sufficient data and enough knowledge about the ecosystem or site being restored. With so many possible decision points, we focus readers' attention on one critical step—how to choose indicators. We distinguish generalizable and specific indicators which can be qualitative, semiquantitative, or quantitative. The generalizable indicators can be used for meta‐analyses. There are many options of indicators but making them more uniform would help mutual comparisons among restoration projects.  相似文献   

20.
Integrating Soil Ecological Knowledge into Restoration Management   总被引:2,自引:0,他引:2  
The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists’ ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in improving the outcomes of restoration despite this variability. Here, we propose that the usefulness of this soil ecological knowledge (SEK) for restoration is best considered in the context of the severity of the original perturbation, the goals of the project, and the resilience of the ecosystem to disturbance. A straightforward manipulation of single physical, chemical, or biological components of the soil system can be useful in the restoration of a site, especially when the restoration goal is loosely defined in terms of the species and processes that management seeks to achieve. These single‐factor manipulations may in fact produce cascading effects on several ecosystem attributes and can result in unintended recovery trajectories. When complex outcomes are desired, intentional and holistic integration of all aspects of the soil knowledge is necessary. We provide a short roster of examples to illustrate that SEK benefits management and restoration of ecosystems and suggest areas for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号