首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local Ca2+ rises and propagated Ca2+ signals represent different patterns that are differentially decoded for fine tuning cellular signalling. This Ca2+ concentration plasticity is absolutely required to allow adaptation to different needs of the cells ranging from contraction or increased learning to proliferation and cell death. A wide diversity of molecular structures and specific location of Ca2+ signalling molecules confer spatial and temporal versatility to the Ca2+ changes allowing specific cellular responses to be elicited. Various types of local Ca2+ signals have been described. Ca2+ spikes correspond to Ca2+ signals spanning several micrometers but displaying limited propagation into a cell leading to regulation of cellular functions in one particular zone of this cell. This is of particular relevance in cells presenting distinct morphological specializations, i.e. apical versus basal sites or dendritic versus somatic/axonal sites. More stereotyped elementary Ca2+ events (denominated Ca2+ sparks or Ca2+ puffs depending on the type of endoplasmic reticulum Ca2+ release channel involved) are highly confined and non-propagated Ca2+ rises which are observed in the close neighbouring of the Ca2+ channels. These elementary Ca2+ events play a major role in controlling cellular excitability. Elementary Ca2+ events involve Ca2+ release channels such as the ryanodine receptors (RyRs) and the inositol 1,4,5-trisphosphate receptors (InsP3Rs). The molecular bases underlying the various local Ca2+ release events will be discussed by reviewing the channels and particularly the different isoforms of RyRs and InsP3Rs and their role in inducing localized Ca2+ responses. These calcium release events are controlled by various second messengers and are regulated by Ca2+ channel-associated proteins, intra-luminal Ca2+ content of the endoplasmic reticulum (ER) and other Ca2+ organelles. We will discuss on how the control of local cellular Ca2+ content may account for cellular functions in physiological and physiopathological conditions.  相似文献   

2.
Ca2+ signaling, mitochondria and cell death   总被引:1,自引:0,他引:1  
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate.  相似文献   

3.
Calcium signal compartmentalization   总被引:3,自引:0,他引:3  
Cytosolic calcium signals are produced by suddenly increasing the concentration of free calcium ions (Ca2+). This can occur by opening channels permeable to Ca2+ either in the surface cell membrane or in the membranes of intracellular organelles containing high Ca2+ concentrations. Ca2+ signals can control several different processes, even in the same cell. In pancreatic acinar cells, for example, Ca2+ signals do not only control the normal secretion of digestive enzymes, but can also activate autodigestion and programmed cell death. Recent technical advances have shown that different patterns of Ca2+ signals can be created, in space and time, which allow specific cellular responses to be elicited. The mechanisms responsible for Ca2+ signal compartmentalization are now largely known and will be described on the basis of recent studies of Ca2+ transport pathways and their regulation in pancreatic acinar cells. It turns out that the Ca2+ handling as well as the structural characteristics of the endoplasmic reticulum (ER) and the mitochondria are of particular importance. Using a variety of Ca(2+)-sensitive fluorescent probes placed in different sub-cellular compartments in combination with local uncaging of caged Ca2+, many new insights into Ca2+ signal generation, compartmentalization and termination have recently been obtained.  相似文献   

4.
Mitochondrial ca(2+) signaling and cardiac apoptosis   总被引:2,自引:0,他引:2  
The broad significance of apoptosis in the cardiovascular system only began to be recognized more widely recently. Apoptotic cell death is a normal component of postnatal morphogenesis of the human cardiac conduction system and may also be involved in the pathogenesis of a variety of cardiovascular diseases, including heart failure, myocardial infarction and atherosclerosis. Recently, it has become evident that mitochondria play important role in the signaling machinery of apoptotic cell death by releasing several apoptotic factors such as cytochrome c, apoptosis-inducing factor and procaspases. Furthermore, calcium signals have been identified as one of the major signals that converge on mitochondria to trigger the mitochondrion-dependent pathway of the apoptotic cell death. Calcium signals are also important in the physiological control of mitochondrial energy metabolism and it has not yet been explored how Ca(2+) turns from a signal for life to a signal for death. Since large elevations of cytosolic [Ca(2+)] ([Ca(2+)](c)) occur during each heartbeat in cardiac myocytes and these [Ca(2+)](c) signals may efficiently propagate to the mitochondria, the Ca(2+)-dependent mitochondrial pathways of apoptosis can be particularly important in the heart. This review is concerned with the role of mitochondrial Ca(2+) signaling in the control of cardiac apoptosis.  相似文献   

5.
The specificity of Ca2+ signalling   总被引:2,自引:0,他引:2  
A calcium signal is a sudden increase in concentration of calcium ions (Ca2+) in the cytosol. Such signals are crucial for the control of many important functions of the body. In the brain, for example, Ca2+ signals are responsible for memory, in muscle cells they switch on contraction, whereas in gland cells they are responsible for regulation of secretion. In many cases Ca2+ signals can control several different processes in the same cell. As an example, we shall deal with one particular cell type, namely the pancreatic acinar cell, which is responsible for the secretion of the enzymes essential for the digestion of food. In this cell, Ca2+ signals do not only control the normal enzyme secretion, but also regulate growth (cell division) and programmed cell death (apoptosis). Until recently, it was a mystery how the same type of signal could regulate such diverse functions in one and the same cell. Recent technical advances have shown that different patterns of Ca2+ signals can be created, in space and time, which allow specific cellular responses to be elicited.  相似文献   

6.
In the developing thymus, strong T cell receptor (TCR) activation by self-antigensinduces negative selection and weak TCR activation induces positive selection. Bothprocesses are mediated by Ca2+ signals, raising the question of how a single secondmessenger like Ca2+ can mediate such diverse cell fates. Recent findings indicate thatgraded TCR activation signals are encoded in distinct patterns of Ca2+ elevation. Theanti-apoptotic protein Bcl-2 discriminates between these Ca2+ signaling patterns,selectively inhibiting pro-apoptotic Ca2+ signals induced by strong TCR activationwithout suppressing pro-survival Ca2+ signals induced by weak TCR activation.  相似文献   

7.
Ng CK  McAinsh MR 《Annals of botany》2003,92(4):477-485
Calcium ions function as intracellular second messengers in regulating a plethora of cellular processes from acclimative stress responses to survival and programmed cell death. The generation of specificity in Ca2+ signals is dependent on influx and efflux from the extracellular milieu, cytosol and intracellular organelles. One aspect of plant Ca2+ signalling that is currently attracting a great deal of interest is how 'Ca2+-signatures', specific spatio-temporal changes in cytosolic-free Ca2+, encode the necessary information to bring about this range of physiological responses. Here, current information is reviewed on how Ca2+-signatures are generated in plant cells and how stimulus-specific information can be encoded in the form of Ca2+-signatures.  相似文献   

8.
Many physiological processes are controlled by a great diversity of Ca2+ signals that depend on Ca2+ entry into the cell and/or Ca2+ release from internal Ca2+ stores. Ca2+ mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2+ release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2+ stores. Activation of the NAADP-sensitive Ca2+ channels evokes complex changes in cytoplasmic Ca2+ levels by means of channel chatter with other intracellular Ca2+ channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2+ signaling.  相似文献   

9.
Ca2+ and synaptic plasticity   总被引:3,自引:0,他引:3  
Cavazzini M  Bliss T  Emptage N 《Cell calcium》2005,38(3-4):355-367
The induction and maintenance of synaptic plasticity is well established to be a Ca2+-dependent process. The use of fluorescent imaging to monitor changes [Ca2+]i in neurones has revealed a diverse array of signaling patterns across the different compartments of the cell. The Ca2+ signals within these compartments are generated by voltage or ligand-gated Ca2+ influx, and release from intracellular stores. The changes in [Ca2+]i are directly linked to the activity of the neurone, thus a neurone's input and output is translated into a dynamic Ca2+ code. Despite considerable progress in measuring this code much still remains to be determined in order to understand how the code is interpreted by the Ca2+ sensors that underlie the induction of compartment-specific plastic changes.  相似文献   

10.
Intraluminal calcium as a primary regulator of endoplasmic reticulum function   总被引:10,自引:0,他引:10  
The concentration of Ca2+ inside the lumen of endoplasmic reticulum (ER) regulates a vast array of spatiotemporally distinct cellular processes, from intracellular Ca2+ signals to intra-ER protein processing and cell death. This review summarises recent data on the mechanisms of luminal Ca2+-dependent regulation of Ca2+ release and uptake as well as ER regulation of cellular adaptive processes. In addition we discuss general biophysical properties of the ER membrane, as trans-endomembrane Ca2+ fluxes are subject to basic electrical forces, determined by factors such as the membrane potential of the ER and the ease with which Ca2+ fluxes are able to change this potential (i.e. the resistance of the ER membrane). Although these electrical forces undoubtedly play a fundamental role in shaping [Ca2+](ER) dynamics, at present there is very little direct experimental information about the biophysical properties of the ER membrane. Further studies of how intraluminal [Ca2+] is regulated, best carried out with direct measurements, are vital for understanding how Ca2+ orchestrates cell function. Direct monitoring of [Ca2+](ER) under conditions where the cytosolic [Ca2+] is known may also help to capture elusive biophysical information about the ER, such as the potential difference across the ER membrane.  相似文献   

11.
Receptor activation may result in distinct subcellular patterns of Ca2+ release. To define the subcellular distribution of Ca2+i signals induced by stimulation of the vasopressin V1a receptor, we expressed the cloned receptor in Xenopus oocytes. Oocytes were then loaded with fluo-3 and observed using confocal microscopy. Vasopressin induced a single concentric wave of increased Ca2+ that radiated inward from the plasma membrane. With submaximal stimulation, however, regions of the Ca2+ wave spontaneously reorganized into repetitive (oscillatory) waves. Focal stimulation of a small part of the plasma membrane resulted in a Ca2+ wave which began at the point of stimulation, radiated toward the center of the cell, then reorganized into multiple foci of repetitive, colliding waves and spirals of increased Ca2+i. The pattern of Ca2+ signaling induced by focal or global stimulation was not altered in Ca(2+)-free medium, although signals did not propagate as fast. Finally, subcellular Ca2+ signaling patterns induced by vasopressin were inhibited by caffeine, while neither vasopressin nor microinjection of inositol trisphosphate blocked caffeine-induced increases in cytosolic Ca2+. Thus, stimulation of the V1a receptor in this cell system induces a complex pattern of Ca2+ signaling which is influenced by (1) the magnitude of the stimulus, (2) the distribution of the surface receptors that are stimulated, and (3) mobilization of Ca2+ from the extracellular space as well as from two distinct endogenous Ca2+ pools. The manner in which a single type of receptor is activated may represent an important potential mechanism for subcellular Ca2+i signaling.  相似文献   

12.
Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship.   总被引:8,自引:0,他引:8  
Increases in intracellular free Ca2+ concentration ([Ca2+]i), whether initiated by changes in plasma membrane potential or receptor-stimulated polyphosphoinositide hydrolysis, can be astonishingly complex, often occurring as repetitive Ca2+ spikes and regenerative Ca2+ waves that propagate through the cell and sometimes into neighbouring cells. The key to understanding these complex Ca2+ signals lies in understanding the interactions between the different pools from which Ca2+ can rapidly enter the cytosol and the activities of the various Ca(2+)-transporting systems that reverse the process.  相似文献   

13.
Cancer of the prostate commonly metastasizes to bony sites where cells acquire an aggressive, rapidly proliferating, androgen-independent phenotype. The interaction between bone and prostate, thus, becomes a key factor in disease progression. Fluctuations in intracellular ionized Ca2+ [Ca2+]i are rapid, regulated signal transduction events often associated with cell proliferation. Hence, Ca2+ signals provide a convenient measure of early events in cancer cell growth. This study developed single cell fluorescent imaging techniques to visualize Ca2+ signals in Fura-2 loaded prostatic cancer cell lines of various metastatic phenotypes. Solubilized bone fractions containing extracellular matrix and associated proteins were tested for the ability to trigger Ca2+ signals in prostate cancer cell lines. Fractions representing the complete repertoire of non-collagenous proteins present in mineralized bone were tested. Results demonstrated that two bone fractions termed D3b- and D4a-triggered Ca2+ signals in prostate cancer cells derived from bone (PC-3), but not brain (DU-145) metastases of prostate cancer. Lymph-node derived LNCaP cells also did not produce a Ca2+ signal in response to addition of soluble bone matrix. No other bone fractions produced a Ca2+ signal in PC-3 cells. It is of interest that bone fractions D3b and D4a contain a number of non-collagenous matrix proteins including osteonectin (SPARC) and osteopontin (OPN), as well as prothrombin. Moreover, antibody LM609 that recognizes the alpha v beta 3 integrin, blocks the ability of OPN to trigger a Ca2+ transient in PC-3 cells. These studies support a conclusion that bone-matrix proteins play a role in the growth and progression of metastatic prostate cancer, and that prior growth in bone may be associated with development of a bone-matrix-responsive phenotype.  相似文献   

14.
Calcium signals have been implicated in the regulation of many diverse cellular processes. The problem of how information from extracellular signals is delivered with specificity and fidelity using fluctuations in cytosolic Ca2+ concentration remains unresolved. The capacity of cells to generate Ca2+ signals of sufficient spatial and temporal complexity is the primary constraint on their ability to effectively encode information through Ca2+. Over the past decade, a large body of literature has dealt with some basic features of Ca2+-handling in cells, as well as the multiplicity and functional diversity of intracellular Ca2+ stores and extracellular Ca2+ influx pathways. In principle, physiologists now have the necessary information to attack the problem of function- and agonist-specificity in Ca2+ signal transduction. This review explores the data indicating that Ca2+ release from diverse sources, including many types of intracellular stores, generates Ca2+ signals with sufficient complexity to regulate the vast number of cellular functions that have been reported as Ca2+-dependent. Some examples where such complexity may relate to neuroendocrine regulation of hormone secretion/synthesis are discussed. We show that the functional and spatial heterogeneity of Ca2+ stores generates Ca2+ signals with sufficient spatiotemporal complexity to simultaneously control multiple Ca2+-dependent cellular functions in neuroendocrine systems.  相似文献   

15.
Cellular processes can be controlled by cell-wide increases in the cytosolic Ca2+ concentration or, alternatively, by localized Ca2+ signals in micro- and nano-domains. The experimental characterization of such localized Ca2+ signals would be facilitated using an immobilized Ca2+ indicator, which could prevent the accelerated spatial spreading of Ca2+ ions that is mediated by binding to diffusible indicators. Here we characterize a dextran-based Ca2+ indicator (CAAX-green) that becomes immobilized in the cytosol by an enzyme-mediated addition of a geranylgeranyl lipid group. CAAX-green consists of a dextran backbone with an attached Ca(2+)-green as well as an 11 residue peptide ending in a C-terminal CAAX-motif. Once introduced into cells by microporation, geranylgeranyl lipid groups are attached to the CAAX peptides by cytosolic enzymes. Measurements in tumor mastcells, myocytes and fibroblasts showed that the indicator becomes membrane attached between 30 min and 1 h following incorporation into the cytoplasm. A time-dependent 10-fold reduction of the diffusion coefficient and a parallel increase in the cytosolic retention after permeabilization indicates that at least 90% of cellular CAAX-green is immobilized. The KD of the indicator in permeabilized cells is 0.65 microM. Overall, these properties make CAAX-green well suited for the investigation of localized Ca2+ signals in a variety of cell types.  相似文献   

16.
Vascular damage signals smooth muscle cells to proliferate, often exacerbating existing pathologies. Although the role of changes in "global" Ca2+ in vascular smooth muscle (VSM) cell dedifferentiation has been studied, the role of specific Ca2+ signals in determining VSM phenotype remains relatively unexplored. Earlier work with cultured VSM cells suggests that inositol 1,4,5-trisphosphate receptor (IP3R) expression and sarcoplasmic reticulum (SR) Ca2+ release may be linked to VSM cell proliferation in native tissue. Thus we hypothesized that SR Ca2+ release through IP3Rs in the form of discrete transient signals is necessary for VSM cell proliferation. To investigate this hypothesis, we used mouse cerebral arteries to design an organ culture system that permitted examination of Ca2+ dynamics in native tissue. Explanted arteries were cultured in normal medium with 10% FBS, and appearance of individual VSM cells migrating from explanted arteries (outgrowth cells) was tracked daily. Initial exposure to 10% FBS increased Ca2+ waves in myocytes in the arteries that were blocked by the IP3R antagonist 2-aminoethoxydiphenylborate (2-APB). Inhibition of IP3R opening (via 100 microM 2-APB, 10 microM xestospongin C, or 25 microM U-73122) dramatically reduced outgrowth cell number compared with untreated or ryanodine-treated (10 microM) arteries. Consistent with this finding, 2-APB inhibited cell proliferation, as measured by reduced proliferating cell nuclear antigen immunostaining within 48 h of culture but did not inhibit cell migration. These results indicate that activation of IP3R Ca2+ release is required for VSM cell proliferation in these arteries.  相似文献   

17.
Cells of the human promyelocytic cell line HL-60 can be controllably induced to terminally differentiate into either granulocytes or monocyte/macrophages. HL-60 promyelocytes and terminally differentiated macrophages express a K(+)-selective ion channel which is activated by intracellular free Ca2+ concentrations above 10(-7) M. Because of its voltage independence, this channel can be distinguished from the voltage- and Ca(2+)-activated family of outward-rectifying channels. The channel is selective for K+ against Na+ and is blocked by Ba2+, thus it may be similar to the Ca(2+)-activated K+ channel previously described in human macrophages. In its sensitivity to block by charybdotoxin, this channel also resembles a Ca(2+)-activated K+ channel of lymphocytes, which plays a role in activation-dependent hyperpolarization. In contrast to promyelocytes and macrophages, functional expression of the Ca(2+)-activated K+ channel is suppressed to nearly undetectable levels in granulocytes derived from HL-60 cells by retinoic acid-induced differentiation. These data suggest that signals which produce elevation of intracellular Ca2+ will hyperpolarize promyelocytes and differentiated macrophages by activating this conductance; however, signals which elevate free Ca2+ in granulocytes must act on other effectors, which may produce a different final influence on membrane potential.  相似文献   

18.
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.  相似文献   

19.
Many physiological processes are controlled by a great diversity of Ca2+ signals. Within cell, Ca2+ signals depend upon Ca2+ entry and/or Ca2+ release from internal Ca2+ stores. The control of Ca2+-store mobilization is ensured by a family of messengers comprising inositol 1,4,5 trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). From recent works, new concepts have emerged where activation of the cells by outside stimuli, acting at the plasma membrane, results in the synthesis of multiple Ca2+-releasing messengers which may interact and shape complex Ca2+ signals in the cytosol as well as in the nucleus. This contribution will cover the most recent advances on NAADP signalling with some emphasis on neurons.  相似文献   

20.
Mitochondria may function as multiple separate organelles or as a single electrically coupled continuum to modulate changes in [Ca2+]c (cytoplasmic Ca2+ concentration) in various cell types. Mitochondria may also be tethered to the internal Ca2+ store or plasma membrane in particular parts of cells to facilitate the organelles modulation of local and global [Ca2+]c increases. Differences in the organization and positioning contributes significantly to the at times apparently contradictory reports on the way mitochondria modulate [Ca2+]c signals. In the present paper, we review the organization of mitochondria and the organelles role in Ca2+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号