首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epicutaneous application of haptens to UV-exposed skin induces hapten-specific tolerance. This is mediated via regulatory T cells (Tr), as i.v. injection of T cells from UV-tolerized mice into naive animals renders the recipients unresponsive to the respective hapten. However, when UV-induced Tr are injected i.v. into sensitized mice, contact hypersensitivity (CHS) is not suppressed, suggesting that Tr inhibit the induction, but not the elicitation, of CHS and are inferior to T effector cells. As sensitization takes place in the lymph nodes, but elicitation occurs in the area of challenge, we postulated that Tr injected i.v. locate to the lymph nodes and not to the periphery and therefore only suppress the induction, not the elicitation, of CHS. Indeed, i.v. injection of Tr into sensitized mice did not inhibit CHS, although injection of Tr into the ears of sensitized mice suppressed the challenge. Inhibition was hapten specific, as injection of dinitrofluorobenzene (DNFB)-specific Tr into the ears of oxazolone (OXA)-sensitized mice did not affect challenge with OXA. However, when ears of OXA-sensitized mice were injected with DNFB-specific Tr and painted with DNFB before OXA challenge, CHS was suppressed. Inhibition correlated with the local expression of IL-10. Depletion studies and FACS analysis revealed that Tr express the lymph node-homing receptor L-selectin, but not the ligands for the skin-homing receptors E- and P-selectin, suggesting that UV-induced Tr, although able to inhibit T effector cells, do not suppress the elicitation of CHS upon i.v. injection, because they obviously do not migrate into the skin.  相似文献   

2.
Hapten sensitization through UV-exposed skin induces hapten-specific tolerance that can be adoptively transferred by injecting T lymphocytes into naive recipients. The exact phenotype of T cells responsible for inhibiting the immune response and their mode of action remain unclear. Evidence exists that CTLA-4 negatively regulates T cell activation. We addressed whether CTLA-4 is involved in the transfer of UV-induced tolerance. Injection of lymph node cells from mice that were sensitized with dinitrofluorobenzene (DNFB) through UV-irradiated skin inhibited induction of contact hypersensitivity against DNFB in the recipient animals. When CTLA-4+ cells were depleted, transfer of suppression was lost. Likewise, significantly fewer lymphocytes enriched for CTLA-4+ cells were necessary to transfer suppression than unfractionated cells. Expression of CTLA-4 appears to be functionally relevant, since in vivo injection of a blocking anti-CTLA-4 Ab was able to break UV-induced tolerance and inhibited transfer of suppression. Upon stimulation with dendritic cells in the presence of the water-soluble DNFB analogue, DNBS, CTLA-4+ T cells from DNFB-tolerized mice secreted high levels of IL-10, TGF-beta, and IFN-gamma; low levels of IL-2; and no IL-4, resembling the cytokine pattern of T regulatory 1 cells. Ab blocking of CTLA-4 resulted in inhibition of IL-10 release. Accordingly, transfer of tolerance was not observed when recipients were treated with an anti-IL-10 Ab. Hence we propose that T cells, possibly of the T regulatory 1 type, transfer UV-mediated suppression through the release of IL-10. Activation of CTLA-4 appears to be important in this process.  相似文献   

3.
Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. The points at which IL-1R signaling is required during this complex, multistep immune response have not been clearly delineated. The role of IL-1R signaling during 2, 4 dinitro-1-fluorobenezene (DNFB) sensitization to induce hapten-specific CD8 effector T cells and in the trafficking of the effector T cells to the DNFB challenge site to elicit the response were investigated using IL-1R deficient mice. DNFB-sensitized IL-1R(-/-) mice had low CHS responses to hapten challenge that were caused in part by marked decreases in hapten-specific CD8 T cell development to IL-17- and IFN-γ-producing cells during sensitization. Hapten-primed wild type CD8 T cell transfer to naive IL-1R(-/-) mice did not result in T cell activation in response to hapten challenge, indicating a need for IL-1R signaling for the localization or activation, or both, of the CD8 T cells at the challenge site. Decreased CD8 T cell priming in sensitized IL-1R(-/-) mice was associated with marked decreases in hapten-presenting dendritic cell migration from the sensitized skin to draining lymph nodes. Transfer of hapten-presenting dendritic cells from wild type donors to naive IL-1R(-/-) mice resulted in decreased numbers of the dendritic cells in the draining lymph nodes and decreased priming of hapten-specific CD8 T cells compared with dendritic cell transfer to naive wild type recipients. These results indicate that IL-1R signaling is required at multiple steps during the course of sensitization and challenge to elicit CHS.  相似文献   

4.
The basis of extracorporeal photopheresis is the reinfusion of leukocytes previously exposed to 8-methoxypsoralen (8-MOP) and UVA radiation. It has been approved for the palliative treatment of cutaneous T cell lymphoma and has reported benefits in autoimmune diseases, transplant rejection, and graft-vs-host disease. However, the underlying mechanism of photopheresis remains unresolved. Because UVB radiation can cause immune tolerance via induction of regulatory T cells, we studied whether photopheresis exerts a similar effect extracorporeally. Therefore, we established a model of photopheresis using a murine model of contact hypersensitivity. Splenocytes and lymph node cells of mice that were sensitized with dinitrofluorobenzene were exposed to 8-MOP plus UVA in vitro. Intravenous injection of these cells into naive mice caused inhibition of a hapten immune response, which was lost upon depletion of CD11c(+) cells but not T cells. Mice that received untreated cells or cells exposed to UVA or 8-MOP alone were not affected. Inhibition was cell-mediated and Ag-specific as demonstrated by transfer of tolerance from the primary recipients into naive animals, which could, however, properly respond to the unrelated hapten oxazolone. Transfer activity was lost when cells were depleted of CD4(+) or CD25(+) subpopulations. These data suggest that photopheresis exerts its immunomodulatory effects via the induction of Ag-specific regulatory T cells.  相似文献   

5.
Hapten sensitization through UV-exposed skin induces systemic immune suppression, which is experimentally demonstrated by inhibition of contact hypersensitivity (CHS). Although this UV-induced effect has been shown to be mediated by inhibition of the afferent phase of the CHS, the UV effects on the efferent (elicitation) phase remain unknown. In this study, UV effects on endothelial ICAM-1 expression at elicitation sites were first examined. Mice were sensitized by hapten application onto UV-exposed back skin, and ears were challenged 5 days later. ICAM-1 up-regulation at nonirradiated elicitation sites following hapten challenge was eliminated by UV exposure on sensitization sites distant from elicitation sites. To assess whether loss of the ICAM-1 up-regulation at elicitation sites contributed to UV-induced immunosuppression, we examined CHS responses in UV-exposed ICAM-1-deficient (ICAM-1(-/-)) mice that genetically lacked the ICAM-1 up-regulation. ICAM-1(-/-) mice exhibited reduced CHS responses without UV exposure, but UV exposure did not further reduce CHS responses in ICAM-1(-/-) mice. Furthermore, ICAM-1 deficiency did not affect the afferent limb, because ICAM-1(-/-) mice had normal generation of hapten-specific suppressor and effector T cells. This UV-induced immunosuppression was associated with a lack of TNF-alpha production after Ag challenge at elicitation sites. Local TNF-alpha injection before elicitation abrogated the UV-induced CHS inhibition with increased endothelial ICAM-1 expression. TNF-alpha production at elicitation sites was down-regulated by IL-10, a possible mediator produced by hapten-specific suppressor T cells that are generated by UV exposure. These results indicate that UV exposure inhibits CHS by abrogating up-regulation of endothelial ICAM-1 expression after Ag challenge at elicitation sites.  相似文献   

6.
Contact hypersensitivity (CHS) is a T cell response to hapten skin challenge of sensitized individuals proposed to be mediated by hapten-primed CD8 cytolytic T cells. Effector CD8 T cell recruitment into hapten challenge sites to elicit CHS requires prior CXCL1- and CXCL2-mediated neutrophil infiltration into the site. We investigated whether neutrophil activities directing hapten-primed CD8 T cell skin infiltration in response to 2,4-dinitro-1-fluorobenzene (DNFB) required Fas ligand (FasL) and perforin expression. Although DNFB sensitization of gld/perforin(-/-) mice induced hapten-specific CD8 T cells producing IFN-γ and IL-17, these T cells did not infiltrate the DNFB challenge site to elicit CHS but did infiltrate the challenge site and elicit CHS when transferred to hapten-challenged naive wild-type recipients. Hapten-primed wild-type CD8 T cells, however, did not elicit CHS when transferred to naive gld/perforin(-/-) recipients. Wild-type bone marrow neutrophils expressed FasL and perforin, and when transferred to sensitized gld/perforin(-/-) mice, they restored hapten-primed CD8 T cell infiltration into the challenge site and CHS. The FasL/perforin-mediated activity of wild-type neutrophils induced the expression of T cell chemoattractants, CCL1, CCL2, and CCL5, within the hapten-challenged skin. These results indicate FasL/perforin-independent functions of hapten-primed CD8 T cells in CHS and identify new functions for neutrophils in regulating effector CD8 T cell recruitment and immune responses in the skin.  相似文献   

7.
Tolerance to the DNP haptenic determinant was induced with a single i.v. injection of trinitrophenylated syngeneic red blood cells. The tolerant state lasted 1 month and was stable on transfer to irradiated thymectomized syngeneic recipients. Suppressor activity was found soon after injection of tolerogen but was lost before the termination of tolerance. The unresponsive state could be reversed by adding normal thymus cells to tolerant spleen cells but not by normal bone marrow cells. LPS when given with immunogen restored the normal immune response in tolerant mice. Thus the injection of TNP-MRBC induced partial immune unresponsiveness which was characterized by the induction of T cell suppressor activity and by a hapten-specific helper T cells tolerance. Finally, these studies suggest a cooperative interaction between DNP-specific T lymphocytes and DNP-specific B lymphocytes in the immune response to DNP-BGG.  相似文献   

8.
UV radiation of the skin impairs immune responses to haptens and to tumor Ags. Transcutaneous immunization (TCI) is an effective method of inducing immune responses to protein and peptide Ag. We explore the effect of UV irradiation on TCI. The generation of Ag-specific CTL to OVA protein, but not class I MHC-restricted OVA peptide, is inhibited by TCI through UV-irradiated skin. Consequently, the induction of protein contact hypersensitivity and in vivo Ag-specific CTL activity following OVA protein immunization is prevented. Application of haptens to UV-exposed skin induces hapten-specific tolerance. We demonstrate that application of protein or class II MHC-restricted OVA peptide to UV-irradiated skin induces transferable Ag-specific tolerance. This tolerance is mediated by CD4(+)CD25(+) T regulatory (T(reg)) cells. These Ag-specific T(reg) cells inhibit the priming of CTL following protein immunization in the presence of CpG adjuvant. IL-10 deficiency is known to prevent hapten-specific tolerance induction. In this study, we demonstrate, using IL-10-deficient mice and adoptive T cell transfer, that IL-10 is required for the direct inhibition of CTL priming following immunization through UV-irradiated skin. However, IL-10 is not required for the induction of T(reg) cells through UV-irradiated skin as IL-10-deficient T(reg) cells are able to mediate tolerance. Rather, host-derived IL-10 is required for the function of UV-generated T(reg) cells. These experiments indicate that protein and peptide TCI through UV-irradiated skin may be used to induce robust Ag-specific tolerance to neo-Ags and that UV-induced T(reg) cells mediate their effects in part through the modulation of IL-10.  相似文献   

9.
IL-10 controls ultraviolet-induced carcinogenesis in mice   总被引:1,自引:0,他引:1  
UV radiation-induced immunosuppression contributes significantly to the development of UV-induced skin cancer by inhibiting protective immune responses. IL-10 has been shown to be a key mediator of UV-induced immunosuppression. To investigate the role of IL-10 during photocarcinogenesis, groups of IL-10(+/+), IL-10(+/-), and IL-10(-/-) mice were chronically irradiated with UV. IL-10(+/+) and IL-10(+/-) mice developed skin cancer to similar extents, whereas IL-10(-/-) mice were protected against the induction of skin malignancies by UV. Because UV is able to induce regulatory T cells, which play a role in the suppression of protective immunity, UV-induced regulatory T cell function was analyzed. Splenic regulatory T cells from UV-irradiated IL-10(-/-) mice were unable to confer immunosuppression upon transfer into naive recipients. UV-induced CD4+CD25+ T cells from IL-10(-/-) mice showed impaired suppressor function when cocultured with conventional CD4+CD25- T cells. CD4+CD25- T cells from IL-10(-/-) mice produced increased amounts of IFN-gamma and enhanced numbers of CD4+TIM-3+ T cells were detectable within UV-induced tumors in IL-10(-/-) mice, suggesting strong Th1-driven immunity. Mice treated with CD8+ T cells from UV-irradiated IL-10(-/-) mice rejected a UV tumor challenge significantly faster, and augmented numbers of granzyme A+ cells were detected within injected UV tumors in IL-10(-/-) animals, suggesting marked antitumoral CTL responses. Together, these findings indicate that IL-10 is critically involved in antitumoral immunity during photocarcinogenesis. Moreover, these results point out the crucial role of Th1 responses and UV-induced regulatory T cell function in the protection against UV-induced tumor development.  相似文献   

10.
Previously, oral administration of nickel to C57BL/6 wild-type (WT) mice was shown to render both their splenic T cells and APCs (i.e., T cell-depleted spleen cells) capable of transferring nickel tolerance to naive syngeneic recipients. Moreover, sequential adoptive transfer experiments revealed that on transfer of tolerogenic APCs and immunization, the naive T cells of the recipients differentiated into regulatory T (Treg) cells. Here, we demonstrate that after oral nickel treatment Jalpha18(-/-) mice, which lack invariant NKT (iNKT) cells, were not tolerized and failed to generate Treg cells. However, transfer of APCs from those Jalpha18(-/-) mice did tolerize WT recipients. Hence, during oral nickel administration, tolerogenic APCs are generated that require iNKT cell help for the induction of Treg cells. To obtain this help, the tolerogenic APCs must address the iNKT cells in a CD1-restricted manner. When Jalpha18(-/-) mice were used as recipients of cells from orally tolerized WT donors, the WT Treg cells transferred the tolerance, whereas WT APCs failed to do so, although they proved tolerogenic on transfer to WT recipients. However, Jalpha18(-/-) recipients did become susceptible to the tolerogenicity of transferred WT APCs when they were reconstituted with IL-4- and IL-10-producing CD4(+) iNKT cells. We conclude that CD4(+) iNKT cells are required for the induction of oral nickel tolerance and, in particular, for the infectious spread of tolerance from APCs to T cells. Once induced, these Treg cells, however, can act independently of iNKT cells.  相似文献   

11.
The effect of histamine type 2 (H2) receptor antagonists, cimetidine and ranitidine, on the induction and expression of hapten-specific suppressor T cells was studied. The activity of DNBSO3 -induced suppressor cells was evaluated after adoptive transfer to naive syngeneic recipients. Treatment with cimetidine or ranitidine markedly inhibited suppressor T cell activity in a dose-related manner and enhanced the contact sensitivity response to DNFB. Both H2 antagonists were effective in inhibiting the expression and, to a lesser extent, the induction of suppressor T cells. In contrast, norburimamide , a non-H2 antagonist structurally related to cimetidine, was inactive. The relevance of these findings to the clinical observation of cimetidine-induced reversal of acquired tolerance to dinitrochlorobenzene in anergic patients is discussed.  相似文献   

12.
We adapted our mouse model of allergic contact hypersensitivity to nickel for the study of tolerance. Sensitization in this model is achieved by the administration of nickel ions with H(2)O(2); nickel ions alone are unable to prime naive T cells, but can restimulate primed ones. A 4-wk course of oral or i.p. administration of 10 mM NiCl(2) to naive mice induced tolerance, preventing the induction of hypersensitivity for at least 20 wk; long term desensitization of nickel-sensitized mice, however, required continuous NiCl(2) administration. When splenic T cells of orally tolerized donors, even after a treatment-free interval of 20 wk, were transferred to naive recipients, as with lymph node cells (LNC), they specifically prevented sensitization of the recipients. The LNC of such donors were anergic, because upon in vivo sensitization with NiCl(2) in H(2)O(2) and in vitro restimulation with NiCl(2), they failed to show the enhanced proliferation and IL-2 production as seen with LNC of mice not tolerized before sensitization. As few as 10(2) bulk T cells, consisting of both CD4(+) and CD8(+) cells, were able to specifically transfer tolerance to nickel. A hypothesis is provided to account for this extraordinarily high frequency of nickel-reactive, suppressive T cells; it takes into account that nickel ions fail to act as classical haptens, but form versatile, unstable metal-protein and metal-peptide complexes. Furthermore, a powerful amplification mechanism, such as infectious tolerance, must operate which allows but a few donor T cells to tolerize the recipient.  相似文献   

13.
UV-induced DNA damage has been recognized as the major molecular trigger for photoimmunosuppression. IL-12 prevents UV-induced immunosuppression via its recently discovered capacity to reduce DNA damage presumably via induction of DNA repair. Because IL-18 shares some biological activities with IL-12 we studied the effect of IL-18 on UV-induced DNA damage and immunosuppression. IL-18 reduced UV-induced apoptosis of keratinocytes and supported long-term cell survival on UV exposure. Injection of IL-18 into mice that were exposed to UV radiation significantly lowered the number of apoptotic keratinocytes. Accordingly, radiation immunohistochemistry revealed reduced amounts of DNA damage in epidermal cells upon injection of IL-18. These effects were not observed in DNA repair-deficient (XpaKO) mice, indicating that IL-18 like IL-12 reduces DNA damage via DNA repair. UV-mediated suppression of the induction of contact hypersensitivity, which is known to be primarily triggered by DNA damage, was prevented upon injection of IL-18 before UV exposure in wild-type but not in XpaKO mice. In contrast to IL-12, IL-18 was not able either in wild-type or in XpaKO mice to break UV-induced immunotolerance that is mediated via regulatory T cells rather than in a DNA damage-dependent fashion. This result indicates that IL-12 is still unique in its capacity to restore immune responses because of its effect on regulatory T cells. Together, these data identify IL-18 as a further cytokine that exhibits the capacity to affect DNA repair. Though being primarily a proinflammatory cytokine through this capacity, IL-18 can also foster an immune response that is suppressed by UV radiation.  相似文献   

14.
The purpose of this study was to determine whether multiple types of suppressor factors play a role in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (UV Ts). The UV Ts were induced by applying contact allergens to the ventral, unirradiated skin of mice exposed 5 days earlier to UVB radiation. Previous studies indicated that supernatants from cultures containing UV Ts, normal lymphocytes, and hapten-modified cells suppressed contact hypersensitivity (CHS) in vivo and cytotoxic T lymphocyte (CTL) generation in vitro in a hapten-specific manner. In this report, cell-free lysates from sonically disrupted UV Ts were examined for their ability to suppress these responses. When lysates were injected into normal animals at the time of sensitization, they inhibited CHS in a hapten-nonspecific manner. In addition, the lysates suppressed not only the induction but also the elicitation of CHS, and they suppressed the generation of CTL. Lysates prepared from spleen cells obtained from non-UV-irradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Moreover, in contrast to the lysates, the hapten-specific UV Ts culture supernatants inhibited the induction but not the elicitation of CHS. These results suggest that both hapten-specific and nonspecific inhibitory factors may participate in the regulation of immune responses by UV Ts.  相似文献   

15.
Role of B7 in T cell tolerance   总被引:7,自引:0,他引:7  
The induction of effective immune responses requires costimulation by B7 molecules, and Ag recognition without B7 is thought to result in no response or tolerance. We compared T cell responses in vivo to the same Ag presented either by mature dendritic cells (DCs) or as self, in the presence or absence of B7. We show that Ag presentation by mature B7-1/2-deficient DCs fails to elicit an effector T cell response but does not induce tolerance. In contrast, using a newly developed adoptive transfer system, we show that naive OVA-specific DO11 CD4+ T cells become anergic upon encounter with a soluble form of OVA, in the presence or absence of B7. However, tolerance in DO11 cells transferred into soluble OVA transgenic recipients can be broken by immunization with Ag-pulsed DCs only in B7-deficient mice and not in wild-type mice, suggesting a role of B7 in maintaining tolerance in the presence of strong immunogenic signals. Comparing two double-transgenic models--expressing either a soluble or a tissue Ag--we further show that B7 is not only essential for the active induction of regulatory T cells in the thymus, but also for their maintenance in the periphery. Thus, the obligatory role of B7 molecules paradoxically is to promote effective T cell priming and contain effector responses when self-Ags are presented as foreign.  相似文献   

16.
Transplantation tolerance can be induced in mice by grafting under the cover of nondepleting CD4 plus CD8 or CD154 mAbs. This tolerance is donor Ag specific and depends on a population of CD4(+) regulatory T cells that, as yet, remain poorly defined in terms of their specificity, origin, and phenotype. Blocking of the Ag-specific response in vitro with an anti-CD4 mAb allowed T cells from monospecific female TCR-transgenic mice against the male Ag Dby, presented by H-2E(k), to express high levels of foxP3 mRNA. foxP3 induction was dependent on TGF-beta. The nondepleting anti-CD4 mAb was also able to induce tolerance in vivo in such monospecific TCR-transgenic mice, and this too was dependent on TGF-beta. As in conventional mice, acquired tolerance was dominant, such that naive monospecific T cells were not able to override tolerance. Splenic T cells from tolerant mice proliferated normally in response to Ag, and secreted IFN-gamma and some IL-4, similar to control mice undergoing primary or secondary graft rejection. High levels of foxP3 mRNA, and glucocorticoid-induced TNFR superfamily member 18 (GITR)(+) CD25(+) T cells were found within the tolerated skin grafts of long-term tolerant recipients. These data suggest that regulatory T cells maintaining transplantation tolerance after CD4 Ab blockade can be induced de novo through a TGF-beta-dependent mechanism, and come to accumulate in tolerated grafts.  相似文献   

17.
The magnitude and duration of CD8(+) T cell-mediated responses in the skin to hapten sensitization and challenge, contact hypersensitivity (CHS), is negatively regulated by CD4(+) T cells through an unknown mechanism. In this study we show that CD4(+) T cells restrict the development and expansion of hapten-specific CD8(+) T cells mediating CHS responses to 2,4-dinitrofluorobenzene. In the absence of CD4(+) T cells, high numbers of hapten-specific CD8(+) T cells producing IFN-gamma were detected in the skin-draining lymph nodes on day 5 postsensitization, and these numbers decreased slightly, but were maintained through day 9, correlating with the increased magnitude and duration of CHS responses observed in these mice. In the presence of CD4(+) T cells, the number of hapten-specific CD8(+) T cells producing IFN-gamma detected on day 5 postsensitization was lower and quickly fell to background levels by day 7. The limited development of effector CD8(+) T cells was associated with decreased numbers of hapten-presenting dendritic cells in the lymphoid priming site. This form of immunoregulation was absent after sensitization of Fas ligand-defective gld mice. Transfer of wild-type CD4(+) T cells to gld mice restored the negative regulation of CD8(+) T cell priming and the immune response to hapten challenge in gld-recipient mice. These results indicate that CD4(+) T cells restrict hapten-specific CD8(+) T cell priming for CHS responses through a Fas ligand-dependent mechanism.  相似文献   

18.
An active role of T regulatory cells (Treg) and tolerogenic dendritic cells (Tol-DC) is believed important for the induction and maintenance of transplantation tolerance. However, interactions between these cells remain unclear. We induced donor-specific tolerance in a fully MHC-mismatched murine model of cardiac transplantation by simultaneously targeting T cell and DC function using anti-CD45RB mAb and LF 15-0195, a novel analog of the antirejection drug 15-deoxyspergualin, respectively. Increases in splenic Treg and Tol-DC were observed in tolerant recipients as assessed by an increase in CD4(+)CD25(+) T cells and DC with immature phenotype. Both these cell types exerted suppressive effects in MLR. Tol-DC purified from tolerant recipients incubated with naive T cells induced the generation/expansion of CD4(+)CD25(+) Treg. Furthermore, incubation of Treg isolated from tolerant recipients with DC progenitors resulted in the generation of DC with Tol-DC phenotype. Treg and Tol-DC generated in vitro were functional based on their suppressive activity in vitro. These results are consistent with the notion that tolerance induction is associated with a self-maintaining regulatory loop in which Tol-DC induce the generation of Treg from naive T cells and Treg programs the generation of Tol-DC from DC progenitors.  相似文献   

19.
CTLA-4 is not required for induction of CD8(+) T cell anergy in vivo.   总被引:2,自引:0,他引:2  
Recent studies of T cell anergy induction have produced conflicting conclusions as to the role of the negative regulatory receptor, CTLA-4. Several in vivo models of tolerance have implicated the interaction of CTLA-4 and its ligands, B7.1 and B7.2, as an essential step in induction of anergy, while results from a number of other systems have indicated that signals from the TCR/CD3 complex alone are sufficient to induce T cell unresponsiveness. One explanation for this disparity is that the requirements for anergy induction depend closely on the details of the system: in vivo vs in vitro, route of stimulus administration, naive vs memory cells, CD4(+) vs CD8(+) cells, etc. To test this possibility, we established an in vivo anergy model using mice transgenic for the 2C TCR on a recombination-activating gene-2-deficient background, that either express or lack the CTLA-4 molecule. This system provides us with a very homogeneous pool of naive Ag-specific CD8(+) T cells, allowing us to control some of the conditions mentioned above. We found that T cells from CTLA-4-deficient mice were anergized by injections of soluble antigenic peptide as efficiently as were CTLA-4-expressing cells. These results indicate that CTLA-4 is not universally required for in vivo T cell anergy induction and may point to distinctions between regulation of peripheral tolerance in CD4(+) and CD8(+) T cells.  相似文献   

20.
We investigated whether oral tolerance could block the development of an inflammatory response mediated by CD8+ T cells, using a mouse model of oral tolerance of contact sensitivity (CS) to the hapten 2, 4-dinitrofluorobenzene (DNFB). In this system, the skin inflammatory response is initiated by hapten-specific class I-restricted cytotoxic CD8+ T (CTL) cells, independently of CD4 help. Oral delivery of DNFB before skin sensitization blocked the CS response by impairing the development of DNFB-specific CD8+ effector T cells in secondary lymphoid organs. This was shown by complete inhibition of DNFB-specific CTL and proliferative responses of CD8+ T cells, lack of specific IFN-gamma-producing CD8+ T cells, and inability of CD8+ T cells to transfer CS in RAG20/0 mice. RT-PCR and immunohistochemical analysis confirmed that recruitment of CD8+ effectors of CS in the skin at the site of hapten challenge was impaired in orally tolerized mice. Sequential anti-CD4 Ab treatment showed that only depletion of CD4+ T cells during the afferent phase of CS abrogated oral tolerance induction by restoring high numbers of specific CD8+ effectors in lymphoid organs, whereas CD4 depletion during the efferent phase of CS did not affect oral tolerance. These data demonstrate that a single intragastric administration of hapten can block in vivo induction of DNFB-specific CD8+ CTL responsible for tissue inflammation and that a subset of regulatory CD4+ T cells mediate oral tolerance by inhibiting expansion of specific CD8+ effectors in lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号