首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The relationship between UCP2 and UCP3 expression and mitochondrial proton conductance of rat skeletal muscle was examined. Rats were starved for 24 h and the levels of UCP2 and UCP3 mRNA and UCP3 protein were determined by Northern and Western blots. Proton conductance was measured by titrating mitochondrial respiration rate and membrane potential with malonate. Starvation increased UCP2 and UCP3 mRNA levels more than 5-fold and 4-fold, respectively, and UCP3 protein levels by 2-fold. However, proton conductance remained unchanged. These results suggest either that Northern and Western blots do not reflect the levels of active protein or that these UCPs do not catalyse the basal proton conductance in skeletal muscle mitochondria.  相似文献   

3.
Toyomizu M  Ueda M  Sato S  Seki Y  Sato K  Akiba Y 《FEBS letters》2002,529(2-3):313-318
Although bird species studied thus far have no distinct brown adipose tissue (BAT) or a related thermogenic tissue, there is now strong evidence that non-shivering mechanisms in birds may play an important role during cold exposure. Recently, increased expression of the duckling homolog of the avian uncoupling protein (avUCP) was demonstrated in cold-acclimated ducklings [Raimbault et al., Biochem. J. 353 (2001) 441-444]. Among the mitochondrial anion carriers, roles for the ATP/ADP antiporter (ANT) as well as UCP variants in thermogenesis are proposed. The present experiments were conducted (i) to examine the effects of cold acclimation on the fatty acid-induced uncoupling of oxidative phosphorylation in skeletal muscle mitochondria and (ii) to clone the cDNA of UCP and ANT homologs from chicken skeletal muscle and study differences compared to controls in expression levels of their mRNAs in the skeletal muscle of cold-acclimated chickens. The results obtained here show that suppression of palmitate-induced uncoupling by carboxyatractylate was greater in the subsarcolemmal skeletal muscle mitochondria from cold-acclimated chickens than that for control birds. An increase in mRNA levels of avANT and, to lesser degree, of avUCP in the skeletal muscle of cold-acclimated chickens was also found. Taken together, the present studies on cold-acclimated chickens suggest that the simultaneous increments in levels of avANT and avUCP mRNA expression may be involved in the regulation of thermogenesis in skeletal muscle.  相似文献   

4.
Chronic administration of leptin has been shown to reduce adiposity through energy intake and expenditure. The present study aims to examine how acute central infusion of leptin regulates peripheral lipid metabolism, as assessed by markers indicative of their mobilization and utilization. A bolus infusion of 1 microg/rat leptin into the third cerebroventricle increased the expression of mRNA for hormone-sensitive lipase (HSL), an indicator of lipolysis, in white adipose tissue (WAT). This was accompanied by elevation of plasma levels of glycerol, but not of free fatty acids, as compared to the saline control (P < 0.03). The same treatment with leptin decreased plasma insulin levels but did not affect the plasma glucose level (P < 0.05 for insulin). Among the major regulators of the transportation or utilization of energy substrates, leptin treatment increased expression of mRNA for uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), UCP2 in WAT, and UCP3 in quadriceps skeletal muscle, but not those for fatty acid-binding protein in WAT, carnitine phosphate transferase-1, a marker for beta oxidation of fatty acids in muscle, nor glucose transporter 4 in WAT and muscle (P < 0.01 for HSL, P < 0.05 for UCP1, and P < 0.005 for UCP2 and UCP3). These results indicate that, even in a single bolus, leptin may regulate the mobilization and/or utilization of energy substrates such as fatty acids by affecting lipolytic activity in WAT and by increasing the expression of UCPs in BAT, WAT, and muscle.  相似文献   

5.
6.
The objective of this study was to investigate the sex-dependent regulation of skeletal muscle uncoupling protein (UCP)3 mRNA expression in response to overweight and its relationship with serum levels of free fatty acids, leptin, and insulin. Two obesity models were used: rats made obese by feeding them with a cafeteria diet for 14 wk, and postcafeteria overweight rats fed a chow diet for 10 wk after consuming the cafeteria diet for 14 wk. The effects of 24-h fasting were studied in postcafeteria rats and their age-matched controls. The cafeteria rats ate a high-fat diet and attained an excess body weight that was higher in females (+59%) than in males (+39%). A trend to higher induction of abdominal muscle UCP3 mRNA in male rats than in females after cafeteria diet was apparent (+116% increase vs. +26% increase). Postcafeteria male but not female rats still showed the tendency to have increased UCP3 mRNA levels relative to their age-matched controls. A linear regression analysis showed a significant positive correlation of the UCP3 mRNA levels with overweight and with serum levels of leptin and insulin in males, but not in females, and no correlation with serum free fatty acid levels. A subsequent correlation analysis and a multiple linear regression analysis showed that overweight was the only parameter actually related to UCP3 mRNA levels in males. Fasting-induced upregulation of muscle UCP3 mRNA levels was higher in males (5- to 7-fold) than in females (3- to 4-fold). Our results point to the existence of sex-associated differences in the control of muscle UCP3 expression in response to overweight and fasting, with an impaired induction in female rats under both conditions. The correlation of abdominal muscle UCP3 mRNA expression with overweight in males could be related to their relative resistance to gain weight after chronic overeating of a cafeteria diet, by the purported role of UCP3 in the regulation of lipid utilization.  相似文献   

7.
Brown adipose tissue and skeletal muscle are known to be important sites for nonshivering thermogenesis. In this context, it is accepted that uncoupling proteins (UCPs) are involved in such process, but little is known about the physiological regulation of these proteins as affected by the intake of a high-energy (cafeteria) diet inducing fat deposition. In this study, the UCP messenger RNA (mRNA) expression in interscapular brown adipose tissue (iBAT) and skeletal muscle was assessed to evaluate the influence of a dietary manipulation on energy homeostasis regulation. We report a statistically significant increase in mRNA levels of iBAT UCP1 and UCP3 and a statistical marginal rise in skeletal muscle UCP3 mRNA expression after feeding a high-energy diet, whereas no changes in UCP2 expression were found in either tissue. Furthermore, significant positive associations between iBAT UCP1 and UCP3 mRNA levels with serum leptin were found. Although the expression of the beta(3) adrenoceptor (beta(3)AR) was about 50% in the lean controls compared with the obese group in iBAT, no statistically significant changes were observed concerning peroxisome proliferator-activated receptor gamma2 (PPARgamma2) mRNA levels in muscle or iBAT. We conclude that feeding a diet inducing weight and fat gain produces different outcomes on iBAT and skeletal muscle UCP mRNA expression, revealing a tissue-dependent response for the three UCPs. Results suggest that the regulation of UCP expression in both tissues under these specific dietary conditions may be related to leptin circulating levels.  相似文献   

8.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

9.
In the neonate, adipose tissue and the lung both undergo a rapid transition after birth, which results in dramatic changes in uncoupling protein abundance and glucocorticoid action. Leptin potentially mediates some of these adaptations and is known to promote the loss of uncoupling protein (UCP)1, but its effects on other mitochondrial proteins or glucocorticoid action are not known. We therefore determined the effects of acute and chronic administration of ovine recombinant leptin on brown adipose tissue (BAT) and/or lung in neonatal sheep. For the acute study, eight pairs of 1-day-old lambs received, sequentially, 10, 100, and 100 mug of leptin or vehicle before tissue sampling 4 h from the start of the study, whereas in the chronic study, nine pairs of 1-day-old lambs received 100 mug of leptin or vehicle daily for 6 days before tissue sampling on day 7. Acute leptin decreased the abundance of UCP2, glucocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 mRNA and increased 11beta-HSD type 2 mRNA abundance in BAT, a pattern that was reversed with chronic leptin administration, which also diminished lung UCP2 protein abundance. In BAT, UCP2 mRNA abundance was positively correlated to plasma leptin and nonesterified fatty acids and negatively correlated to mean colonic temperature in the leptin group at 7 days. In conclusion, leptin administration to the neonatal lambs causes differential effects on UCP2 abundance in BAT and lung. These effects may be important in the development of these tissues, thereby optimizing lung function and fat growth.  相似文献   

10.
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.  相似文献   

11.
12.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

13.
Uncoupling protein-2 (UCP2) is a novel mitochondrial protein that may be involved in the control of energy expenditure. We have previously reported an upregulation of adipose tissue UCP2 mRNA expression during fasting in humans. Analysis of changes in metabolic parameters suggested that fatty acids may be associated with the increased UCP2 mRNA level. Culture of human adipose tissue explants was used to study in vitro regulation of adipocyte UCP2 gene expression. A 48-h treatment with BRL49653 and bromopalmitate, two potent activators of PPARgamma, resulted in a dose-dependent increase in UCP2 mRNA levels. The induction by BRL49653 was rapid (from 6 h) and maintained up to 5 days. TNFalpha provoked a 2-fold decrease in UCP2 mRNA levels. Human recombinant leptin did not affect UCP2 mRNA expression. The data support the hypothesis that fatty acids are involved in the control of adipocyte UCP2 mRNA expression in humans.  相似文献   

14.
Heat shock protein (HSP)-70 is expressed in normal and stressed cells but is highly stress-inducible. Although leptin has long been suggested to be involved in the regulation of stress response, its interaction with the HSP-70 gene is still unknown, under both unstressed and stressed conditions. The present study has aimed to investigate the effect of leptin on HSP-70 gene expression in normal chicken liver, hypothalamus, and muscle. Continuous infusion of recombinant chicken leptin (8 μg/kg per hour) at a constant rate of 3 ml/h for 6 h in 3-week-old broiler chickens significantly (P < 0.05) decreased food intake and HSP-70 mRNA levels in liver and hypothalamus, but not in muscle. In an attempt to discriminate between the effect of leptin and of leptin-reduced food intake on HSP-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses in two broiler chicken lines genetically selected for low (LL) or high (FL) abdominal fat pad size. Food deprivation for 16 h did not affect HSP-70 gene expression in any of the studied tissues indicating that the effect of leptin was independent of the inhibition of food intake. Regardless of the nutritional status, HSP-70 mRNA levels were significantly (P < 0.05) higher in the hypothalamus of FL compared with LL chickens consistent with higher mRNA levels for hypothalamic corticotropin-releasing factor. To assess, whether the effects of leptin were direct or indirect, we carried out in vitro studies. Leptin treatments did not affect HSP-70 mRNA levels in a leghorn male hepatoma cell line or quail myoblast cell line suggesting that the effect of leptin on HSP-70 gene expression is mediated through the central nervous system. Furthermore, HSP-70 gene expression was gender-dependent with significantly (P < 0.05) higher levels in male than in female chickens. This work was supported by a research grant (G.0402.05) from the FWO-Flanders (Belgium). No conflicts of interest would prejudice impartiality.  相似文献   

15.
Uncoupling protein 3 (UCP3) is a member of the mitochondrial transporter superfamily that is expressed primarily in skeletal muscle. UCP3 is upregulated in various conditions characterized by skeletal muscle atrophy, including hyperthyroidism, fasting, denervation, diabetes, cancer, lipopolysaccharide (LPS), and treatment with glucocorticoids (GCs). The influence of sepsis, another condition characterized by muscle cachexia, on UCP3 expression and activity is not known. We examined UCP3 gene and protein expression in skeletal muscles from rats after cecal ligation and puncture and from sham-operated control rats. Sepsis resulted in a two- to threefold increase in both mRNA and protein levels of UCP3 in skeletal muscle. Treatment of rats with the glucocorticoid receptor antagonist RU-38486 prevented the sepsis-induced increase in gene and protein expression of UCP3. The UCP3 mRNA and protein levels were increased 2.4- to 3.6-fold when incubated muscles from normal rats were treated with dexamethasone (DEX) and/or free fatty acids (FFA) ex vivo. In addition, UCP3 mRNA and protein levels were significantly increased in normal rat muscles in vivo with treatment of either DEX or FFA. The results suggest that sepsis upregulates the gene and protein expression of UCP3 in skeletal muscle, which may at least in part be mediated by GCs and FFA.  相似文献   

16.
17.
The uncoupling protein 1 (UCP1), a mitochondrial transmembrane protein, is responsible for adaptive thermogenesis in brown adipose tissue (BAT). Two UCP1 homologues, UCP2 and UCP3, were recently discovered, but it is controversial whether they also play a role in energy homeostasis. Djungarian hamster UCPs were found to exhibit high similarity with homologues known in other species. UCP1 mRNA was restricted to BAT, UCP2 mRNA was expressed in multiple tissues, and UCP3 mRNA was detected mainly in BAT and skeletal muscles. We examined the cold-induced regulation of hamster UCP mRNA levels and tested their correlation with serum free fatty acid (FFA) concentrations. In BAT UCP1, UCP2, and UCP3 expression was upregulated in the cold, but the increase and time course of increase differed. In skeletal muscle, UCP2 and UCP3 mRNA levels were not altered. Cold-induced changes of serum FFA levels correlated with the stimulation of UCP1 mRNA in BAT but not with UCP2 and UCP3.  相似文献   

18.
Food deprivation (FD) increases hypothalamic neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels and decreases proopiomelanocortin (POMC) mRNA levels; refeeding restores these levels. We determined the time course of changes in hypothalamic NPY, AGRP, and POMC mRNA levels on refeeding after 24 h FD in C57BL mice by in situ hybridization. After 24 h deprivation, mice were refed with either chow or a palatable mash containing no calories or were injected with murine leptin (100 microg) without food. Mice were perfused 2 or 6 h after treatment. Food deprivation increased hypothalamic NPY mRNA (108 +/- 6%) and AGRP mRNA (78 +/- 7%) and decreased hypothalamic POMC mRNA (-15 +/- 1%). Refeeding for 6 h, but not 2 h, was sufficient to reduce (but not restore) NPY mRNA, did not affect AGRP mRNA, and restored POMC mRNA levels to ad libitum control levels. Intake of the noncaloric mash had no effect on mRNA levels, and leptin administration after deprivation (at a dose sufficient to reduce refeeding in FD mice) was not sufficient to affect mRNA levels. These results suggest that gradual postabsorptive events subsequent to refeeding are required for the restoration of peptide mRNA to baseline levels after food deprivation in mice.  相似文献   

19.
Objective: The objective of this study is to test the impact of high‐fat diet (HFD) feeding on skeletal muscle (SM) uncoupling protein 3 (UCP3) expression and its association with mitochondrial ion permeability and whole‐body energy homeostasis. Research Methods and Procedures: Sprague–Dawley rats were fed ad libitum either a HFD (60% of energy from fat, n = 6) or a low‐fat diet (12% of energy from fat, n = 6) for 4 weeks. Twenty‐four‐hour energy expenditure was measured by indirect calorimetry in the last week of the dietary treatment. Blood samples were collected for plasma leptin and free fatty acid assays, and mitochondria were isolated from hindlimb SM for subsequent determinations of UCP3 levels and mitochondrial ion permeability. Results: Plasma leptin levels were higher in rats fed the HFD despite the same body weight in two groups. The same dietary treatment also rendered a 2‐fold increase in plasma free fatty acid and SM UCP3 protein levels (Western blot) compared with the group fed the low‐fat diet. However, the elevated UCP3 protein levels did not correlate with mitochondrial swelling rates, a measure of mitochondrial chloride, and proton permeability, or with 24‐hour energy expenditure. Discussion: The high correlation between the levels of plasma free fatty acid levels and SM UCP3 suggests that circulating free fatty acid may play an important role in UCP3 expression during the HFD feeding. However, the dissociation between the UCP3 protein levels and 24‐hour energy expenditure as well as mitochondrial ion permeability suggests that mitochondrial proton leak mediated by muscle UCP3 may not be a major contributor in energy balance in HFD feeding, and other regulatory mechanisms independent of gene regulation may be responsible for the control of UCP3‐mediated uncoupling activity.  相似文献   

20.
To study the regulation of the mitochondrial uncoupling protein 2 and 3 (UCP2 and UCP3), we studied the effect of insulin and muscle contraction on UCP mRNA expression in rat skeletal muscle in vitro. Insulin dose-dependently increased skeletal muscle UCP2 and UCP3 mRNA expression in m. extensor digitorum longus (EDL) with maximal stimulation obtained at around 0.6-6 nM. The concentration of insulin giving half-maximal stimulation was 60 pM for the UCP2 and 48 pM for the UCP3 mRNA expression. The effect of insulin was maximal after 2 h and the effect was sustained during the whole study period (6 h). The insulin-induced increase in UCP mRNA was independent of the glucose uptake (as UCP mRNA was stimulated even in incubations without glucose). In addition, electrically induced contractions (in vitro) increased UCP2 and UCP3 mRNA expression 60-120 min after a single bout of contraction (for 10 min). Both the increment of UCP2 and UCP3 mRNA were sustained throughout the study period (4 h) (153 +/- 62 and 216 +/- 71% above basal, P < 0.05 respectively). Finally, 5-aminoimidazole-4-carboxamid-ribosid (AICAR), an activator of the AMP-activated protein kinase (AMPK), that is activated during exercise, was able to mimic the increase in UCP2 and UCP3 mRNA expression. In conclusion, UCP2 and UCP3 mRNA expression in skeletal muscle are stimulated rapidly by insulin and contraction in vitro, thus the stimulation is direct and not caused by changes in other hormones or metabolites. Even a brief bout of contraction induces an increase in UCP2 and UCP3 expression, an effect that could be mimicked by activation of the AMP-activated protein kinase by AICAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号