首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T‐cell‐expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR‐100, miR‐99a and miR‐10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR‐99a cooperated with miR‐150 to repress the expression of the Th17‐promoting factor mTOR. The comparably low expression of miR‐99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR‐150 could only repress Mtor in the presence of miR‐99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs.  相似文献   

2.
Various types of endogenous stem cells (SCs) participate in wound healing in the skin at different anatomical locations. SCs need to be identified through multiple markers, and this is usually performed using flow cytometry. However, immunohistological identification of endogenous stem cells in the skin at different anatomical locations by co-staining multiple SC markers has been seldom explored. We examined the immunohistological localization of four major types of SCs in wounded skin by co-staining for their multiple markers. Hematopoietic SCs were co-stained for Sca1 and CD45; mesenchymal SCs for Sca1, CD29, and CD106; adipose SCs for CD34, CD90, and CD105; and endothelial progenitor cells and their differentiated counterparts were co-stained for CD34, Tie2, and von Willebrand factor. We found Sca1+CD45+ SCs in the epidermis, dermis and hypodermis of wounded skin. Sca1+CD29+ and Sca1+CD106+ mesenchymal SCs, CD34+CD105+, CD34+CD90+, and CD90+CD105+ adipose SCs, as well as CD34+Tie2+ endothelial progenitor cells were also located in the epidermis, dermis, and hypodermis. This study demonstrates the feasibility of using immunohistological staining to determine the location of SCs in wounded skin and the intracellular distribution of their molecular markers.  相似文献   

3.
The mechanisms of latent tuberculosis (TB) infection remain elusive. Roles of microRNA (miRNA) have been highlighted in pathogen–host interactions recently. To identify miRNAs involved in the immune response to TB, expression profiles of miRNAs in CD4+ T cells from patients with latent TB, active TB and healthy controls were investigated by microarray assay and validated by RT‐qPCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyse the significant functions and involvement in signalling pathways of the differentially expressed miRNAs. To identify potential target genes for miR‐29, interferon‐γ (IFN‐γ) mRNA expression was measured by RT‐qPCR. Our results showed that 27 miRNAs were deregulated among the three groups. RT‐qPCR results were generally consistent with the microarray data. We observed an inverse correlation between miR‐29 level and IFN‐γ mRNA expression in CD4+ T cells. GO and KEGG pathway analysis showed that the possible target genes of deregulated miRNAs were significantly enriched in mitogen‐activated protein kinase signalling pathway, focal adhesion and extracellular matrix receptor interaction, which might be involved in the transition from latent to active TB. In all, for the first time, our study revealed that some miRNAs in CD4+ T cells were altered in latent and active TB. Function and pathway analysis highlighted the possible involvement of miRNA‐deregulated mRNAs in TB. The study might help to improve understanding of the relationship between miRNAs in CD4+ T cells and TB, and laid an important foundation for further identification of the underlying mechanisms of latent TB infection and its reactivation.  相似文献   

4.
5.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   

6.
7.
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Evidences have suggested that CD133 is a marker for a subset of glioblastoma cancer stem cells. However, whether miRNA plays a critical role in CD133+ GBM is poorly understood. Here, we identified that miR‐154 was upregulated in CD133+ GBM cell lines. Knockdown of miR‐154 remarkably suppressed proliferation and migration of CD133+ GBM cells. Further study found that PRPS1 was a direct target of miR‐154 in CD133+ GBM cells. Overexpression of PRPS1 exhibited similar effects as miR‐154 knockdown in CD133+ GBMs. Our study identified miR‐154 as a previously unrecognized positive regulator of proliferation and migration in CD133+ GBM cells and a potentially therapeutic target of GBMs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44CD24?/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.  相似文献   

9.
The imbalance of Th17/Treg cell populations has been suggested to be involved in the regulation of rheumatoid arthritis (RA) pathogenesis; however, the mechanism behind this phenomenon remains unclear. Recent studies have shown how microRNAs (miRNAs) are important regulators of immune responses and are involved in the development of a variety of inflammatory diseases, including RA. In this study, we demonstrated that the frequencies of CD3+CD4+IL‐17+Th17 cells were significantly higher, and CD4+CD25+FOXP3+ Treg cells significantly lower in peripheral blood mononuclear cells from RA patients. Detection of cytokines from RA patients revealed an elevated panel of pro‐inflammatory cytokines, including IL‐17, IL‐6, IL‐1β, TNF‐α and IL‐22, which carry the inflammatory signature of RA and are crucial in the differentiation and maintenance of pathogenic Th17 cells and dysfunction of Treg cells. However, the level of miR‐21 was significantly lower in RA patients, accompanied by the increase in STAT3 expression and activation, and decrease in STAT5/pSTAT5 protein and Foxp3 mRNA levels. Furthermore, lipopolysaccharide stimulation up‐regulated miR‐21 expression from healthy controls, but down‐regulated miR‐21 expression from RA patients. Therefore, we speculate that miR‐21 may be part of a negative feedback loop in the normal setting. However, miR‐21 levels decrease significantly in RA patients, suggesting that this feedback loop is dysregulated and may contribute to the imbalance of Th17 and Treg cells. MiR‐21 may thus serve as a novel regulator in T‐cell differentiation and homoeostasis, and provides a new therapeutic target for the treatment of RA.  相似文献   

10.
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.  相似文献   

11.
12.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

13.
Skin injury induces the formation of new blood vessels by activating the vasculature in order to restore tissue homeostasis. Vascular cells may also differentiate into matrix-secreting contractile myofibroblasts to promote wound closure. Here, we characterize a PECAM1+/Sca1+ vascular cell population in mouse skin, which is highly enriched in wounds at the peak of neoangiogenesis and myofibroblast formation. These cells express endothelial and perivascular markers and present the receptor CD38 on their surface. PECAM1+/Sca1+/CD38+ cells proliferate upon wounding and could give rise to α-SMA+ myofibroblast-like cells. CD38 stimulation in immunodeficient mice reduced the wound size at the peak of neoangiogenesis and myofibroblast formation. In humans a corresponding cell population was identified, which was enriched in sprouting vessels of basal cell carcinoma biopsies. The results indicate that PECAM1+/Sca1+/CD38+ vascular cells could proliferate and differentiate into myofibroblast-like cells in wound repair. Moreover, CD38 signaling modulates PECAM1+/Sca1+/CD38+ cell activation in the healing process implying CD38 as a target for anti-angiogenic therapies in human basal cell carcinoma.  相似文献   

14.
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.  相似文献   

15.
Extracellular vesicles (EVs) are abundant, lipid‐enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type‐specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR‐Cas9‐mediated genome editing to generate mice bearing a CD63‐emGFPloxP/stop/loxP knock‐in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage‐specific Cre recombinase driver mice. As proof‐of‐principle, we have crossed these mice with Cdh5‐CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma‐purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co‐express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR‐126, miR‐30c, and miR‐125b). This new mouse strain should be a useful genetic tool for generating cell type‐specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.  相似文献   

16.
Recent evidence showed that limited activation of PI3K/Akt pathway was critical for induction and function sustainment of CD4+Foxp3+ regulatory T cells (Tregs). However, the underlying mechanism remains largely unknown. In this study, we reported that miR‐126 was expressed in mouse and human Tregs. Further study showed that silencing of miR‐126 using miR‐126 antisense oligonucleotides (ASO) could significantly reduce the induction of Tregs in vitro. Furthermore, miR‐126 silencing could obviously reduce the expression of Foxp3 on Tregs, which was accompanied by decreased expression of CTLA‐4 and GITR, as well as IL‐10 and TGF‐β, and impair its suppressive function. Mechanistic evidence showed that silencing of miR‐126 enhanced the expression of its target p85β and subsequently altered the activation of PI3K/Akt pathway, which was ultimately responsible for reduced induction and suppressive function of Tregs. Finally, we further revealed that miR‐126 silencing could impair the suppressive function of Tregs in vivo and endow effectively antitumour effect of CD8+T cells in adoptive cell transfer assay using a murine breast cancer model. Therefore, our study showed that miR‐126 could act as fine‐tuner in regulation of PI3K‐Akt pathway transduction in the induction and sustained suppressive function of Tregs and provided a novel insight into the development of therapeutic strategies for promoting T‐cell immunity by regulating Tregs through targeting specific miRNAs.  相似文献   

17.
Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.  相似文献   

18.
19.
Human Parvovirus B19 (PVB19) is one of the most important pathogens that targets erythroid lineage. Many factors were mentioned for restriction to erythroid progenitor cells (EPCs). Previous studies showed that in non-permissive cells VP1 and VP2 (structural proteins) mRNAs were detected but could not translate to proteins. A bioinformatics study showed that this inhibition might be due to specific microRNAs (miRNAs) present in non-permissive cells but not in permissive EPCs. To confirm the hypothesis, we evaluated the effect of miRNAs on VP expression. CD34+ HSCs were separated from cord blood. Then, CD34+ cells were treated with differentiation medium to obtain CD36+ EPCs. To evaluate the effect of miRNAs on VP expression in MCF7 and HEK-293 cell lines (non-permissive cells) and CD36+ EPCs, dual luciferase assay was performed in presence of shRNAs against Dicer and Drosha to disrupt miRNA biogenesis. QRT-PCR was performed to check down-regulation of Dicer and Drosha after transfection. All measurements were done in triplicate. Data means were compared using one-way ANOVAs. MicroRNA prediction was done by the online microRNA prediction tools. No significant difference was shown in luciferase activity of CD36+ EPCs after co-transfection with shRNAs, while it was significant in non-permissive cells. Our study revealed that miRNAs may be involved in inhibition of VP expression in non-permissive cells, although further studies are required to demonstrate which miRNAs exactly are involved in regulation of PVB19 replication.  相似文献   

20.
In this study, we first characterized synaptosome microRNA (miRNA) profiles using microarray and qRT‐PCR. MicroRNAs were detected in isolated synaptic vesicles, and Ago2 immunoprecipitation studies revealed an association between miRNAs and Ago2. Second, we found that miR‐29a, miR‐99a, and miR‐125a were significantly elevated in synaptosome supernatants after depolarization. MiRNA secretion by the synaptosome was Ca2+‐dependent and was inhibited by the exocytosis inhibitor, okadaic acid. Furthermore, application of nerve growth factor increased miRNA secretion without altering the spontaneous release of miRNAs. Conversely, kainic acid decreased miRNA secretion and enhanced the spontaneous release of miRNAs. These results indicate that synaptosomes could secrete miRNAs. Finally, synthesized miRNAs were taken up by synaptosomes, and the endocytosis inhibitor Dynasore blocked this process. After incubation with miR‐125a, additional miR‐125a was bound to Ago2 in the synaptosome, and expression of the miR‐125a target gene (PSD95 mRNA) was decreased; these findings suggest that the ingested miRNAs were assembled in the RNA‐induced silencing complex, resulting in the degradation of target mRNAs. To our knowledge, this is the first study that demonstrates the secretion of miRNAs by synaptosomes under physiological stimulation and demonstrates that secreted miRNAs might be functionally active after being taken up by the synaptic fraction via the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号