首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have previously shown that acute increases in pulmonary blood flow (PBF) are limited by a compensatory increase in pulmonary vascular resistance (PVR) via an endothelin‐1 (ET‐1) dependent decrease in nitric oxide synthase (NOS) activity. The mechanisms underlying the reduction in NO signaling are unresolved. Thus, the purpose of this study was to elucidate mechanisms of this ET‐1–NO interaction. Pulmonary arterial endothelial cells were acutely exposed to shear stress in the presence or absence of tezosentan, a combined ETA/ETB receptor antagonist. Shear increased NOx, eNOS phospho‐Ser1177, and H2O2 and decreased catalase activity; tezosentan enhanced, while ET‐1 attenuated all of these changes. In addition, ET‐1 increased eNOS phospho‐Thr495 levels. In lambs, 4 h of increased PBF decreased H2O2, eNOS phospho‐Ser1177, and NOX levels, and increased eNOS phospho‐Thr495, phospho‐catalase, and catalase activity. These changes were reversed by tezosentan. PEG‐catalase reversed the positive effects of tezosentan on NO signaling. In all groups, opening the shunt resulted in a rapid increase in PBF by 30 min. In vehicle‐ and tezosentan/PEG‐catalase lambs, PBF did not change further over the 4 h study period. PVR fell by 30 min in vehicle‐ and tezosentan‐treated lambs, and by 60 min in tezosentan/PEG‐catalase‐treated lambs. In vehicle‐ and tezosentan/PEG‐catalase lambs, PVR did not change further over the 4 h study period. In tezosentan‐treated lambs, PBF continued to increase and LPVR to decrease over the 4 h study period. We conclude that acute increases in PBF are limited by an ET‐1 dependent decrease in NO production via alterations in catalase activity, H2O2 levels, and eNOS phosphorylation. J. Cell. Biochem. 114: 435–447, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration‐dependently enhance bFGF‐induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1‐receptor antagonist), SB203580 (selective p38 mitogen‐activated protein kinase (MAPK) inhibitor) and L ‐NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2‐receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF‐incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF‐κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF‐induced angiogenesis, and this action was linked to VEGF production through H1‐receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. J. Cell. Biochem. 114: 1009–1019, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Ischemic stroke is the leading cause of disabilities worldwide. MicroRNA‐377 (miR‐377) plays important roles in ischemic injury. The present study focused on the mechanisms of miR‐377 in protecting ischemic brain injury in rats. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Primary rat microglial cells and brain microvascular endothelial cells (BMECs) were exposed to oxygen‐glucose deprivation (OGD). The concentrations of cytokines (TNF‐α, IL‐1β, IL‐6, IFN‐γ, TGF‐β, MMP2, COX2, and iNOS) in the culture medium were measured by specific ELISA. Tube formation assay was for the in vitro study of angiogenesis. Luciferase reporter assay was performed to confirm whether VEGF and EGR2 were direct targets of miR‐377. The MCAO rats were intracerebroventricular (ICV) injection of miR‐377 inhibitor to assess its protective effects in vivo. MiR‐377 levels were decreased in the rat brain tissues at 1, 3, and 7 d after MCAO. Both microglia cells and BMECs under OGD showed markedly lower expression levels of miR‐377 while higher expression levels of EGR2 and VEGF compared to those under normoxia conditions. Knockdown of miR‐377 inhibited microglial activation and the release of pro‐inflammatory cytokines after OGD. Suppression of miR‐377 promoted the capillary‐like tube formation and cell proliferation and migration of BMECs. The anti‐inflammation effect of EGR2 and the angiogenesis effect of VEGF were regulated by miR‐377 after OGD. Inhibition of miR‐377 decreased cerebral infarct volume and suppressed cerebral inflammation but promoted angiogenesis in MCAO rats. Knockdown of miR‐377 lessened the ischemic brain injury through promoting angiogenesis and suppressing cerebral inflammation. J. Cell. Biochem. 119: 327–337, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
14.
Pulmonary fibrosis (PF) is a chronic obstructive pulmonary disease without effective clinical drug treatment. Qing‐Xuan Granule (QX) as a traditional Chinese patent medicine is clinically used to cure children's cough. This study was designed to investigate the effects of QX and possible molecular mechanisms for bleomycin‐induced PF. The work used Western blotting and Q‐PCR to explore the vitro and vivo mechanisms of QX treatment, while using HPLC‐TOF/MS to explore the composition of QX. QX was given daily orally for two weeks after bleomycin intratracheal instillation. The protective effects of QX on lung function, inflammation, growth factors, hydroxyproline content and deposition of extracellular matrix were investigated. QX decreased expression of Col I and α‐SMA in lung tissues by down‐regulating TGF‐β1‐Smad2/3 signaling and suppressed epithelial‐mesenchymal transition and effectively reversed abnormal mRNA levels of MMP‐1and TIMP‐1 as well as LOXL‐2 in lung tissues. HPLC‐TOF/MS indicate that six substances could be the main active components, which were reported to protect against experimental lung disease.  相似文献   

15.
16.
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

17.
18.
目的探讨胃癌组织中PTEN、vascular endothelial growthfactor(VEGF)基因表达及其与肿瘤侵袭转移的关系。方法用RT-PCR和免疫组化方法检测胃癌、淋巴结转移组织中PTEN、VEGF mRNA和蛋白表达;用CD34检测肿瘤细胞微血管数。结果PTEN和VEGF mRNA表达阳性率在正常胃黏膜为76.5%与0.0%、胃癌组织为30.9%与69.1%、淋巴结转移组织23.6%与74.5%;PTEN和VEGF蛋白阳性率在正常胃黏膜为76.5%与0.0%、胃癌组织27.9%与82.4%、淋巴结转移组织16.3%与91.0%;胃癌组织中新生血管呈浸润生长,以淋巴结转移组织中明显。胃癌组织PTEN mRNA和蛋白低于正常胃黏膜(P〈0.01),VEGF高于正常胃黏膜(P〈0.01),PTEN与VEGF表达负相关(P〈0.05),VEGF表达与新生血管形成正相关(P〈0.05)。结论PTEN基因失活和VEGF的过表达与新生血管形成相关,可能是通过调节包括VEGF在内的血管生成因子而在血管形成中起作用。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号