首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
There is currently great interest in the use of mesenchymal stem/stromal cells (MSCs) for the therapy of many diseases of animals and humans. However, we are still left with the serious challenges in explaining the beneficial effects of the cells. Hence, it is essential to work backward from dramatic results obtained in vivo to the cellular and molecular explanations in order to discover the secrets of MSCs. This review will focus on recent data that have changed the paradigms for understanding the therapeutic potentials of MSCs.  相似文献   

2.
We have previously demonstrated that in renal cortical collecting duct cells (RCCD1) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT‐RCCD1 (not expressing aquaporins) and AQP2‐RCCD1 (transfected with AQP2). Our results showed that when most RCCD1 cells are in the G1‐phase (unsynchronized), the blockage of barium‐sensitive K+ channels implicated in rapid RVD inhibits cell proliferation only in AQP2‐RCCD1 cells. Though cells in the S‐phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down‐regulation in the rapid RVD response only in AQP2‐RCCD1 cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2—besides increasing water permeability—would play some other role. These observations together with evidence implying a cell‐sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G1, volume tends to increase but it may be efficiently regulated by an AQP2‐dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down‐regulated when volume needs to be increased in order to proceed into the S‐phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. J. Cell. Biochem. 113: 3721–3729, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
Pluripotent stem cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, both hold great promise for the understanding and treatment of disease. They can be used for drug testing, as in vitro models for human disease progression, and for transplantation therapies. Research in this area has been influenced by the ever-changing political landscape, particularly in the United States. In this review, we discuss the prospects for clinical application using pluripotent cells, focusing on an evaluation of iPS cell potential, the continuing concern of tumor formation, and a summary of in vitro differentiation protocols and animal models used. We also describe the current clinical trials underway in the United States, as well as the ups and downs of funding for ES cell work.  相似文献   

6.
7.
8.
9.
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis.  相似文献   

10.
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95–104, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Human Wharton's jelly stem cells (hWJSCs) were shown to inhibit the growth of human mammary carcinomas. It is not known whether cell‐free secretions or lysates of hWJSCs do the same on different cancers. They may be less controversial than cells to regulatory bodies for clinical application. We examined the influence of hWJSC conditioned medium (hWJSC‐CM) and cell‐free lysate (hWJSC‐CL) on two osteosarcoma cell lines (MG‐63, SKES‐1) in vitro and on human mammary carcinomas in immunodeficient mice. When exposed to hWJSC‐CL, increased vacuolations in MG‐63 and increased membrane fragmentation in SKES‐1 cells were observed, with greater cell death in SKES‐1. Exposure of SKES‐1 and MG‐63 cells to hWJSC‐CL showed significant decreases in cell proliferation of 46.48 ± 6.66% and 24.32 ± 5.67% respectively compared to controls. MG‐63 and SKES‐1 cells were annexin V‐FITC positive and SKES‐1 TUNEL positive following treatment with hWJSC‐CM and hWJSC‐CL. MG‐63 cells were positive and SKES‐1 cells negative for anti‐BECLIN‐1 and anti‐LC3B following treatment with hWJSC‐CM and hWJSC‐CL. RT‐PCR showed that the pro‐apoptotic BAX gene and the autophagy‐related ATG‐5 and BECLIN‐1 genes were up‐regulated while the anti‐apoptotic BCL2 and SURVIVIN genes were down‐regulated in MG‐63 and SKES‐1 cells treated with hWJSC‐CM and hWJSC‐CL. Injections of hWJSCs and hWJSC‐CM into mammary carcinomas in immunodeficient mice resulted in decreased tumor sizes and weights of 24.86 ± 6.05% to 37.03 ± 5.91% and 47.14 ± 7.36% to 55.09 ± 5.87% respectively at 6 weeks compared to controls. hWJSC‐CM and hWJSC‐CL inhibit mammary carcinoma and osteosarcoma cells via apoptosis and autophagy. J. Cell. Biochem. 114: 366–377, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16‐defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16‐transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re‐feeding to induce cell cycle re‐entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16‐associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re‐entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by 3H‐thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16‐transfected CMT27A and CMT27H cells exited cell cycle post‐serum‐starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post‐serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non‐proliferative states. J. Cell. Biochem. 114: 1355–1363, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The first successful attempt to reprogram somatic cell into embryonic‐like stem cell was achieved on 2006. Since then, it had sparked a race against time to bring this wonderful invention from bench to bedside but it is not easily achieved due to severe problems in term of epigenetic and genomic. With each problem arise, new technique and protocol will be constructed to try to overcome it. This review addresses the various techniques made available to create iPSC with problems hogging down the technique. J. Cell. Biochem. 114: 1230–1237, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号