首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. A small leucine‐rich dermatan sulfate proteoglycan, biglycan, is one of the predominant types of proteoglycans synthesized by vascular endothelial cells; however, the physiological functions of biglycan are not completely understood. In the present study, bovine aortic endothelial cells in culture were transfected with small interfering RNAs for biglycan, and the expression of other proteoglycans was examined. Transforming growth factor‐β1 signaling was also investigated, because the interaction of biglycan with cytokines has been reported. Biglycan was found to form a complex with either transforming growth factor‐β1 or the transforming growth factor‐β1 type I receptor, ALK5, and to intensify the phosphorylation of Smad2/3, resulting in a lower expression of the transmembrane heparan sulfate proteoglycan, syndecan‐4. This is the first report to clarify the function of biglycan as a regulatory molecule of the ALK5–Smad2/3 TGF‐β1 signaling pathway that mediates the suppression of syndecan‐4 expression in vascular endothelial cells. J. Cell. Biochem. 118: 1087–1096, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
    
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
6.
    
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis.  相似文献   

8.
9.
10.
11.
    
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.  相似文献   

12.
    
Sevoflurane is the most widely used anaesthetic administered by inhalation. Exposure to sevoflurane in neonatal mice can induce learning deficits and abnormal social behaviours. MicroRNA (miR)‐27a‐3p, a short, non‐coding RNA that functions as a tumour suppressor, is up‐regulated after inhalation of anaesthetic, and peroxisome proliferator‐activated receptor γ (PPAR‐γ) is one of its target genes. The objective of this study was to investigate how the miR‐27a‐3p–PPAR‐γ interaction affects sevoflurane‐induced neurotoxicity. A luciferase reporter assay was employed to identify the interaction between miR‐27a‐3p and PPAR‐γ. Primary hippocampal neuron cultures prepared from embryonic day 0 C57BL/6 mice were treated with miR‐27a‐3p inhibitor or a PPAR‐γ agonist to determine the effect of miR‐27a‐3p and PPAR‐γ on sevoflurane‐induced cellular damage. Cellular damage was assessed by a flow cytometry assay to detect apoptotic cells, immunofluorescence to detect reactive oxygen species, western blotting to detect NADPH oxidase 1/4 and ELISA to measure inflammatory cytokine levels. In vivo experiments were performed using a sevoflurane‐induced anaesthetic mouse model to analyse the effects of miR‐27a‐3p on neurotoxicity by measuring the number of apoptotic neurons using the Terminal‐deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) method and learning and memory function by employing the Morris water maze test. Our results revealed that PPAR‐γ expression was down‐regulated by miR‐27a‐3p following sevoflurane treatment in hippocampal neurons. Down‐regulation of miR‐27a‐3p expression decreased sevoflurane‐induced hippocampal neuron apoptosis by decreasing inflammation and oxidative stress‐related protein expression through the up‐regulation of PPAR‐γ. In vivo tests further confirmed that inhibition of miR‐27a‐3p expression attenuated sevoflurane‐induced neuronal apoptosis and learning and memory impairment. Our findings suggest that down‐regulation of miR‐27a‐3p expression ameliorated sevoflurane‐induced neurotoxicity and learning and memory impairment through the PPAR‐γ signalling pathway. MicroRNA‐27a‐3p may, therefore, be a potential therapeutic target for preventing or treating sevoflurane‐induced neurotoxicity.

  相似文献   

13.
    
This study aimed to investigate the protective effects and underlying mechanisms of cistanche on sevoflurane‐induced aged cognitive dysfunction rat model. Aged (24 months) male SD rats were randomly assigned to four groups: control group, sevoflurane group, control + cistanche and sevoflurane + cistanche group. Subsequently, inflammatory cytokine levels were measured by ELISA, and the cognitive dysfunction of rats was evaluated by water maze test, open‐field test and the fear conditioning test. Three days following anaesthesia, the rats were killed and hippocampus was harvested for the analysis of relative biomolecules. The oxidative stress level was indicated as nitrite and MDA concentration, along with the SOD and CAT activity. Finally, PPAR‐γ antagonist was used to explore the mechanism of cistanche in vivo. The results showed that after inhaling the sevoflurane, 24‐ but not 3‐month‐old male SD rats developed obvious cognitive impairments in the behaviour test 3 days after anaesthesia. Intraperitoneal injection of cistanche at the dose of 50 mg/kg for 3 consecutive days before anaesthesia alleviated the sevoflurane‐induced elevation of neuroinflammation levels and significantly attenuated the hippocampus‐dependent memory impairments in 24‐month‐old rats. Cistanche also reduced the oxidative stress by decreasing nitrite and MDA while increasing the SOD and CAT activity. Moreover, such treatment also inhibited the activation of microglia. In addition, we demonstrated that PPAR‐γ inhibition conversely alleviated cistanche‐induced protective effect. Taken together, we demonstrated that cistanche can exert antioxidant, anti‐inflammatory, anti‐apoptosis and anti‐activation of microglia effects on the development of sevoflurane‐induced cognitive dysfunction by activating PPAR‐γ signalling.  相似文献   

14.
    
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

15.
    
Oleoylethanolamide (OEA) is a satiety factor that controls motivational responses to dietary fat. Here we show that alcohol administration causes the release of OEA in rodents, which in turn reduces alcohol consumption by engaging peroxisome proliferator‐activated receptor‐alpha (PPAR‐α). This effect appears to rely on peripheral signaling mechanisms as alcohol self‐administration is unaltered by intracerebral PPAR‐α agonist administration, and the lesion of sensory afferent fibers (by capsaicin) abrogates the effect of systemically administered OEA on alcohol intake. Additionally, OEA is shown to block cue‐induced reinstatement of alcohol‐seeking behavior (an animal model of relapse) and reduce the severity of somatic withdrawal symptoms in alcohol‐dependent animals. Collectively, these findings demonstrate a homeostatic role for OEA signaling in the behavioral effects of alcohol exposure and highlight OEA as a novel therapeutic target for alcohol use disorders and alcoholism.  相似文献   

16.
17.
    
The conformational characteristics of protected homo‐oligomeric Boc‐[β3(R)Val]n‐OMe, n = 1, 2, 3, 4, 6, 9, and 12 have been investigated in organic solvents using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) absorption spectroscopy and circular dichroism (CD) methods. The detailed 1H NMR analysis of Boc‐[β3(R)Val]12‐OMe reveals that the peptide aggregates extensively in CDCl3, but is disaggregated in 20%, (v/v) dimethyl sulfoxide (DMSO) in CDCl3 and in CD3OH. Limited assignment of the N‐terminus NH groups, together with solvent dependence of NH chemical shifts and temperature coefficients provides evidence for 14‐helix conformation in the 12‐residue peptide. FTIR analysis in CHCl3 establishes that the onset of folding and aggregation, as evidenced by NH stretching bands at 3375 cm−1 (intramolecular) and 3285 cm−1 (intermolecular), begins at the level of the tetrapeptide. The observed CD bands, 214 nm (negative) and 198 nm (positive), support 14‐helix formation in the 9 and 12 residue sequences. The folding and aggregation tendencies of homo‐oligomeric α‐, β‐, and γ‐ residues is compared in the model peptides Boc‐[ωVal]n‐NHMe, ω = α, β, and γ and n = 1, 2, and 3. Analysis of the FTIR spectra in CHCl3, establish that the tendency to aggregate at the di and tripeptide level follows the order β > α∼γ, while the tendency to fold follows the order γ > β > α.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号