首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The abnormal accumulation of methylglyoxal (MG), a physiological glucose metabolite, is strongly related to the development of diabetic complications by affecting the metabolism and functions of organs and tissues. These disturbances could modify the cell response to hormones and growth factors, including insulin-like growth factor-1 (IGF-I). In this study, we investigated the effect of MG on IGF-I-induced cell proliferation and the mechanism of the effect in two cell lines, a human embryonic kidney cell line (HEK293), and a mouse fibroblast cell line (NIH3T3). MG rendered these cells resistant to the mitogenic action of IGF-I, and this was associated with stronger and prolonged activation of ERK and over-expression of P21(Waf1/Cip1). The synergistic effect of MG with IGF-I in activation of ERK was completely abolished by PD98059 but not by a specific PI3K inhibitor, LY294002, or a specific PKC inhibitor, bisindolylmaleimide. Blocking of Raf-1 activity by expression of a dominant negative form of Raf-1 did not reduce the enhancing effect of MG on IGF-I-induced activation of ERK. However, transfection of a catalytically inactive form of MEKK1 resulted in inactivation of the MG-induced activation of ERK and partial inhibition of the enhanced activation of ERK and over-expression of p21(Waf1/Cip1) induced by co-stimulation of MG and IGF-I. These results suggested that the alteration of intracellular milieu induced by MG through a MEKK1-mediated and PI3K/PKC/Raf-1-independent pathway resulted in the modification of cell response to IGF-I for p21(Waf1/Cip1)-mediated growth arrest, which may be one of the crucial mechanisms for MG to promote the development of chronic clinical complications in diabetes.  相似文献   

6.
7.
8.
We previously reported that three point mutations in SASH1 and mutated SASH1 promote melanocyte migration in dyschromatosis universalis hereditaria (DUH) and a novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. However, the underlying mechanism of molecular regulation to cause this hyperpigmentation disorder still remains unclear. In this study, we aimed to investigate the molecular mechanism undergirding hyperpigmentation in the dyschromatosis disorder. Our results revealed that SASH1 binds with MAP2K2 and is induced by p53‐POMC‐MC1R signal cascade to enhance the phosphorylation level of ERK1/2 and CREB. Moreover, increase in phosphorylated ERK1/2 and CREB levels and melanogenesis‐specific molecules is induced by mutated SASH1 alleles. Together, our results suggest that a novel SASH1/MAP2K2 crosstalk connects ERK1/2/CREB cascade with p53‐POMC‐MC1R cascade to cause hyperpigmentation phenotype of DUH.  相似文献   

9.
Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are widespread in the environment and cause untoward effects, including carcinogenesis, in mammalian cells. However, the molecular mechanism of apoptosis by BaP is remained to be elusive. Pharmacological inhibition of p38 kinase markedly inhibited the BaP-induced cytotoxicity, which was proven as apoptosis characterized by an increase in sub-G(0)/G(1) fraction of DNA content, ladder-pattern fragmentation of genomic DNA, and catalytic activation of caspase-3 with PARP cleavage. Our data also demonstrated that activation of caspase-3 was accompanied with activation of caspase-9 and mitochondrial dysfunction, which was also apparently suppressed by pretreatment with p38 kinase inhibitors. Also, pharmacological inhibition of p38 markedly inhibited the phosphorylation, accumulated expression, and transactivation activity of p53 in BaP-treated cells. Adenoviral overexpression of human p53 (wild-type) further augmented in increase of PARP cleavage and the sub-G(0)/G(1) fraction of DNA content. Furthermore, p53 mediated apoptotic activity in BaP-treated cells was inhibited by p38 kinase inhibitor. The current data collectively indicate that BaP induces apoptosis of Hepa1c1c7 cells via activation of p53-related signaling, which was, in part, regulated by p38 kinase.  相似文献   

10.
11.
p53负调控前列腺癌细胞中PC-1基因的表达   总被引:1,自引:0,他引:1  
在前列腺癌进展中发生的PC-1基因表达失调和p53基因突变,提示这两个事件之间可能存在的联系.用依托泊苷处理前列腺癌LNCaP细胞后,PC-1蛋白的表达受抑制;瞬时转染分析表明野生型p53负调控PC-1启动子的转录活性;缺失突变分析将PC-1基因启动子上受p53负调控的区域定位在翻译起始位点上游757 bp~323 bp之间.缺失PC-1启动子上的雄激素受体反应元件并没有消除p53对其转录活性的抑制作用;无论p53是否存在,组蛋白去乙酰化酶抑制剂TSA处理LNCaP细胞后可以导致PC-1启动子转录活性升高.因此,p53和去乙酰化酶可以独立抑制PC-1启动子活性.这些研究结果表明,野生型p53负调控PC-1基因启动子的转录活性,而前列腺癌进展过程中p53突变可能和PC-1基因的表达失调有关.  相似文献   

12.
mTORC1 and p53     
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.  相似文献   

13.
Lin YC  Sun SH  Wang FF 《Cellular signalling》2011,23(11):1816-1823
Polo-like kinase 1 (Plk1) plays key roles in many aspects of mitosis. We have previously shown that induction of p21Waf1 by p53 is responsible for protection of cells against adriamycin-induced polyploidy formation and mitotic catastrophe. Here we show that adriamycin treatment suppressed Plk1 expression in a p53- and p21Waf1-dependent manner. Ablation of p21Waf1 inhibited the adriamycin-induced p53 activation, and this inhibition was alleviated by knockdown of Plk1, suggesting that p21Waf1-dependent suppression of Plk1 expression is responsible for maintaining p53 activation during stress response. Plk1 associated with p53 and disrupted its interaction with target gene promoters in cells treated with adriamycin. Overexpression of Plk1 inhibited the p53-mediated prevention of caspase-independent mitotic death, but not polyploidy formation, in adriamycin-treated cells. Together our results indicate that suppression of Plk1 by p21Waf1 is responsible for p53-dependent protection against adriamycin-induced caspase-independent mitotic death.  相似文献   

14.
15.
Ribosomal biogenesis is correlated with cell cycle, cell proliferation, cell growth and tumorigenesis. Some oncogenes and tumor suppressors are involved in regulating the formation of mature ribosome and affecting the ribosomal biogenesis. In previous studies, the mitochondrial ribosomal protein L41 was reported to be involved in cell proliferation regulating through p21(WAF1/CIP1) and p53 pathway. In this report, we have identified a mitochondrial ribosomal protein S36 (mMRPS36), which is localized in the mitochondria, and demonstrated that overexpression of mMRPS36 in cells retards the cell proliferation and delays cell cycle progression. In addition, the mMRPS36 overexpression induces p21(WAF1/CIP1) expression, and regulates the expression and phosphorylation of p53. Our result also indicate that overexpression of mMRPS36 affects the mitochondrial function. These results suggest that mMRPS36 plays an important role in mitochondrial ribosomal biogenesis, which may cause nucleolar stress, thereby leading to cell cycle delay.  相似文献   

16.
Cellular senescence is a state of permanent cellular arrest that provides an initial barrier to cell transformation and tumorigenesis. In this study, we report that expression of NAD(P)H:quinone oxidoreductase 1 (NQO1), a cytoplasmic 2-electron reductase, is induced during oncogene-induced senescence (OIS). Depletion of NQO1 resulted in the delayed onset of senescence. In contrast, ectopic expression of NQO1 enhanced the senescence phenotype. Analysis of the mechanism underlying the up-regulation of NQO1 expression during senescence identified that NQO1 promotes p53 accumulation in an MDM2 and ubiquitin independent manner, which reinforces the cellular senescence phenotype. Specifically, we demonstrated that NRF2/KEAP1 signaling regulates NQO1 expression during OIS. More importantly, we confirmed that depletion of NQO1 facilitates cell transformation and tumorigenesis, which indicates that NQO1 takes part in the senescence barrier and has anti-oncogenic properties in cell transformation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号