首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed caveolae contain a population of protein kinase Cα (PKCα) that appears to regulate membrane invagination. We now report that multiple PKC isoenzymes are enriched in caveolae of unstimulated fibroblasts. To understand the mechanism of PKC targeting, we prepared caveolae lacking PKCα and measured the interaction of recombinant PKCα with these membranes. PKCα bound with high affinity and specificity to caveolae membranes. Binding was calcium dependent, did not require the addition of factors that activate the enzyme, and involved the regulatory domain of the molecule. A 68-kD PKCα-binding protein identified as sdr (serum deprivation response) was isolated by interaction cloning and localized to caveolae. Antibodies against sdr inhibited PKCα binding. A 100–amino acid sequence from the middle of sdr competitively blocked PKCα binding while flanking sequences were inactive. Caveolae appear to be a membrane site where PKC enzymes are organized to carry out essential regulatory functions as well as to modulate signal transduction at the cell surface.  相似文献   

2.
3.
H1N1亚型流感病毒诱导外周血单个核细胞凋亡研究   总被引:6,自引:0,他引:6  
A型流感病毒能诱导淋巴细胞、单核巨噬细胞的凋亡,为进一步探讨淋巴细胞和单核巨噬细胞在凋亡中可能存在的相互作用,用H1N1亚型流感病毒诱导人外周血淋巴细胞和单核巨噬细胞的凋亡.结果显示,前48 h,H1N1流感病毒能诱导淋巴细胞和单核巨噬细胞的凋亡,但在培养48 h后,流感病毒对单核巨噬细胞表现为凋亡抑制作用,同时流感病毒对淋巴细胞吸附不同时间后,荧光染色和流式细胞术检测凋亡未见明显差异,说明细胞凋亡与病毒吸附时间长短并无相关性.检测p53抑制剂Pifithrin-α(PFT-α)加入前后淋巴细胞和单核巨噬细胞的凋亡情况,结果显示,淋巴细胞和单核巨噬细胞的凋亡均被抑制, 提示通过p53诱导的凋亡可能是流感病毒诱导细胞凋亡的一条重要途径.  相似文献   

4.
目的:探讨KATP通道在缺氧中对海马CA1区神经元的保护作用机制。方法:比较对照组、单纯缺氧组、KATP通道激动剂 缺氧组、KATP通道阻断剂 缺氧组中神经元p53 mRNA的表达、DNA断裂、以及神经元存活情况。结果:将神经元暴露在氧浓度为0%的缺氧环境中12h,KATP通道的激动剂二氮嗪(diazoxide,100μmol/L)显著降低p53 mRNA的表达量及细胞的凋亡数量。KATP通道的阻断剂甲糖宁(tolbutamide,100μmol/L)使p53mR-NA表达量显著增加,细胞的凋亡数量也随之显著增加。p53的特异性阻断剂曲古抑菌素(trichostatin,TSA)可以逆转甲糖宁(tolbutamide,100μmol/L)的作用。结论:KATP通道可以通过下调p53 mRNA的表达水平,对缺氧中的海马CA1区神经元起到保护作用。  相似文献   

5.
It has been previously described by different groups that poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53 form tight complexes. We investigated which domains of human PARP-1 and of human wild-type p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length protein or distinct functional domains of both proteins. Baculovirally expressed wild-type p53 was posttranslationally modified. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1. The amino-terminal part harboring the transactivation functional domain of p53 was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. Finally, we explored the functional significance of the interaction between both proteins. Inactivation of PARP-1 resulted in the reduction of p53 steady-state levels. Inhibition of nuclear export by leptomycin B prevented accelerated degradation of p53 in PARP-1 KO cells and led to accumulation of p53 protein. Considering the fact that the accelerated p53 nuclear export in the absence of PARP-1 contributes to enhanced p53 degradation, we conclude that PARP-1 may mask the NES of p53 through complex formation with its carboxy-terminal part, thereby preventing the export.  相似文献   

6.
In many malignant cells, both the anchorage requirement for survival and the function of the p53 tumor suppressor gene are subverted. These effects are consistent with the hypothesis that survival signals from extracellular matrix (ECM) suppress a p53-regulated cell death pathway. We report that survival signals from fibronectin are transduced by the focal adhesion kinase (FAK). If FAK or the correct ECM is absent, cells enter apoptosis through a p53-dependent pathway activated by protein kinase C λ/ι and cytosolic phospholipase A2. This pathway is suppressible by dominant-negative p53 and Bcl2 but not CrmA. Upon inactivation of p53, cells survive even if they lack matrix signals or FAK. This is the first report that p53 monitors survival signals from ECM/FAK in anchorage- dependent cells.  相似文献   

7.
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G2 phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53−/− cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest.  相似文献   

8.
The widely used anti-diabetic drug metformin has been shown to exert strong antineoplastic actions in numerous tumor types, including prostate cancer (PCa). In this study, we show that BI2536, a specific Plk1 inhibitor, acted synergistically with metformin in inhibiting PCa cell proliferation. Furthermore, we also provide evidence that Plk1 inhibition makes PCa cells carrying WT p53 much more sensitive to low-dose metformin treatment. Mechanistically, we found that co-treatment with BI2536 and metformin induced p53-dependent apoptosis and further activated the p53/Redd-1 pathway. Moreover, we also show that BI2536 treatment inhibited metformin-induced glycolysis and glutamine anaplerosis, both of which are survival responses of cells against mitochondrial poisons. Finally, we confirmed the cell-based observations using both cultured cell-derived and patient-derived xenograft studies. Collectively, our findings support another promising therapeutic strategy by combining two well tolerated drugs against PCa proliferation and the progression of androgen-dependent PCa to the castration-resistant stage.  相似文献   

9.
Yuan L  Tian C  Wang H  Song S  Li D  Xing G  Yin Y  He F  Zhang L 《EMBO reports》2012,13(4):363-370
The KRAB-type zinc-finger protein Apak was recently identified as a negative regulator of p53-mediated apoptosis. However, the mechanism of this selective regulation is not fully understood. Here, we show that Apak recognizes the TCTTN2−30TTGT consensus sequence through its zinc-fingers. This sequence is specifically found in intron 1 of the proapoptotic p53 target gene p53AIP1 and largely overlaps with the p53-binding sequence. Apak competes with p53 for binding to this site to inhibit p53AIP1 expression. Upon DNA damage, Apak dissociates from the DNA, which abolishes its inhibitory effect on p53-mediated apoptosis.  相似文献   

10.
To examine whether protein kinase C (PKC) contributes to p53-dependent WAF1 induction after heat treatment, the effects of calphostin C (CAL), a specific inhibitor of PKC, on WAF1 induction were analyzed by PKC activity and gel mobility-shift assays and Western blot analysis in human glioblastoma cell lines. Heat-induced accumulation of WAF1 in A-172 cells carrying wild-typep53(wtp53) was suppressed by CAL in a dose-dependent manner. In T98G cells carrying mutantp53(mp53), no significant accumulation of WAF1 was observed after heat treatment and CAL exerted no significant effects on this response of T98G cells. In accordance with the accumulation of WAF1, heat-induced activation of the binding ability of p53 to p53 consensus sequence (p53 CON) was suppressed by CAL in A-172 cells but no DNA-binding activity was observed in the mp53 in T98G cells. PKC in A-172 cells was activated rapidly (within 5 min) after heat treatment in the membrane fraction but not in the cytosolic fraction. When the cell lines were treated with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), WAF1 was accumulated in A-172 cells in a dose-dependent manner but not in T98G cells. In addition, the cellular contents of WAF1 after heating did not increase in A-172 cells transformed with mp53.These results suggest that PKC contributes to heat-induced signal transduction leading to p53-dependent WAF1 induction in a way that PKC is involved in the specific DNA-binding activation of p53.  相似文献   

11.
PRIMA-1 has been identified as a compound that restores the transactivation function to mutant p53 and induces apoptosis in cells expressing mutant p53. Studies on subcellular distribution of the mutant p53 protein upon treatment with PRIMA-1Met, a methylated form of PRIMA-1, have suggested that redistribution of mutant p53 to nucleoli may play a role in PRIMA-1 induced apoptosis. Here, we specifically investigated the influence of PRIMA-1 on cellular localization of mutated p53-R280K endogenously expressed in tumour cells. By using immunofluorescence staining, we found a strong nucleolar redistribution of mutant p53 following PRIMA-1 treatment. This subcellular localization was associated to p53 degradation via ubiquitylation. When cells were treated with adriamycin, neither nucleolar redistribution nor mutant p53 down modulation and degradation were observed. Interestingly, cells where p53-R280K was silenced were more sensitive to PRIMA-1 than the parental ones. These results indicate that in some cellular context, the cell sensitivity to PRIMA-1 could depend on the abolition of a gain-of-function activity of the mutated p53, through a protein degradation pathway specifically induced by this compound.  相似文献   

12.
Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21(Cip1)-dependent G(1)-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G(1) arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G(1) arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G(1) arrest.  相似文献   

13.
14.
We recently characterized the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53. We investigated which domains of human PARP-1 and of human wild-type (wt) p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length or distinct functional domains of both proteins. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1, whereas the amino-terminal part harboring the transactivation functional domain was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. As the most important features of p53 protein are regulated by phosphorylation, we addressed the question of whether its phosphorylation is essential for binding between the two proteins. Baculovirally expressed wt p53 was post-translationally modified. At least six distinct p53 isomeres were resolved by immunoblotting following two-dimensional separation of baculovirally expressed wt p53 protein. Using specific phospho-serine antibodies, we identified phosphorylation of baculovirally expressed p53 protein at five distinct sites. To define the role of p53 phosphorylation, pull-down assays using untreated and dephosphorylated p53 protein were performed. Dephosphorylated p53 failed to bind PARP-1 indicating that complex formation between both proteins is regulated by phosphorylation of p53. The marked phosphorylation of p53 at Ser392 observed in unstressed cells suggests that the phosphorylated carboxy-terminal part of p53 undergoes complex formation with PARP-1 resulting in masking of the NES and thereby preventing its export. The functional significance of the interaction between both proteins was investigated at two different conditions: inactivation of PARP-1 and overexpression of PARP-1. Our results unequivocally show that the presence of PARP-1 regulates the basal expression of wt p53 in unstressed cells.  相似文献   

15.
p53负调控前列腺癌细胞中PC-1基因的表达   总被引:1,自引:0,他引:1  
在前列腺癌进展中发生的PC-1基因表达失调和p53基因突变,提示这两个事件之间可能存在的联系.用依托泊苷处理前列腺癌LNCaP细胞后,PC-1蛋白的表达受抑制;瞬时转染分析表明野生型p53负调控PC-1启动子的转录活性;缺失突变分析将PC-1基因启动子上受p53负调控的区域定位在翻译起始位点上游757 bp~323 bp之间.缺失PC-1启动子上的雄激素受体反应元件并没有消除p53对其转录活性的抑制作用;无论p53是否存在,组蛋白去乙酰化酶抑制剂TSA处理LNCaP细胞后可以导致PC-1启动子转录活性升高.因此,p53和去乙酰化酶可以独立抑制PC-1启动子活性.这些研究结果表明,野生型p53负调控PC-1基因启动子的转录活性,而前列腺癌进展过程中p53突变可能和PC-1基因的表达失调有关.  相似文献   

16.
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development of many diseases. A previous study indicated that the apoptotic regulator p53 is significantly increased in response to ER stress and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. Here, we investigated whether p53 contributes to the impairment of Pin1 signaling under ER stress. We found that treatment with thapsigargin, a stimulator of p53 expression and an inducer of ER stress, decreased Pin1 expression in HCT116 cells. Also, we identified functional p53 response elements (p53REs) in the Pin1 promoter. Overexpression of p53 significantly decreased Pin1 expression in HCT116 cells while abolition of p53 gene expression induced Pin1 expression. Pin1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α or down-regulation of p53 expression. Taken together, ER stress decreased Pin1 expression through p53 activation, and this mechanism may be associated with ER stress-induced cell death. These data reported here support the importance of Pin1 as a potential target molecule mediating tumor development.  相似文献   

17.
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway.  相似文献   

18.
Numerous studies have shown that supplementation of the growth medium of human fibroblasts with dexamethasone at physiologic concentrations extends replicative lifespan up to 30%. While this extension of lifespan has been used to probe various aspects of the senescent phenotype, no mechanism for the increased lifespan of human fibroblasts grown in the presence of dexamethasone has ever been identified. In the present study we present evidence that the extended lifespan of human lung fibroblasts (WI-38 cells) that occurs when these cells are maintained in culture medium supplemented with dexamethasone is accompanied by a suppression of p21(Waf1/Cip1/Sdi1) levels, which normally increase as these cells enter senescence, while p16(INK4a) levels are unaffected. These results suggest that the delay of senescence in cultures grown in the presence of dexamethasone is due to a suppression of the senescence related increase in p21(Waf1/Cip1/Sdi1). These results are consistent with models of replicative senescence in which p53 and p21(Waf1/Cip1/Sdi1) play a role in the establishment of the senescent arrest.  相似文献   

19.
20.
Stimulation of the activity of deoxycytidine kinase (dCK), the principal deoxynucleoside salvage enzyme, has been recently considered as a protective cellular response to a wide range of agents interfering with DNA repair and apoptosis. In light of this, the potential contribution of dCK activation to apoptosis induction—presumably by supplying dATP or its analogues for the apoptosome formation—deserves consideration. Two‐hour exposure of human tonsillar lymphocytes to 2‐chloro‐deoxyadenosine (CdA) led to a two‐fold activation of dCK. This activation process was inhibited by pifithrin‐α, a potent inhibitor of p53. When the dNTP pools were determined, both deoxypyrimidine triphosphate and dGTP pools were reduced after the treatments, while dATP levels elevated by 62%, 77% and 50% in the CdA, aphidicolin and etoposide‐treated cells, respectively. We assume that dCK activation elicited by cellular damage might be a proapoptotic factor in terms of generating dATP well before the release of cytochrome c and deoxyguanosine kinase from mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号