首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. This mini review highlights the most important findings during three decades of research on biogenic amines in coelenterates.2. Histochemical, analytic chemical and physiological evidences clearly indicate that dopamine is used as an intercellular messenger in hydrozoans.3. The colonian anthozoan Renilla, has β-adrenergic mechanisms in monitoring bioluminescence and serotoninergic mechanisms in rhythmic contractions.  相似文献   

2.
Uptake of amino acids by cultured neuroblastoma and astrocytoma cells was studied in the presence and absence ofl-histidine. Intracellularly accumulated histidine was assumed to induce accumulation of radioactively labeled amino acids from medium by means of exchange transport. Neuroblastoma cells accumulated more histidine than astrocytoma cells and were more sensitive to the enhancement of the uptake of other large neutral amino acids by histidine. Histidine also increased glutamic acid uptake in astrocytoma cells, but reduced it in neuroblastoma cells. The greatest differences between the cell lines in amino acid uptake without histidine were found with acidic amino acids (astrocytoma cells accumulated them more than neuroblastoma cells) and with taurine (the reverse was found). The uptake and exchange mechanisms for some neutral and acidic amino acids may thus be dissimilar in the plasma membranes of cultured cells of neuronal and glial origin.  相似文献   

3.
4.
The regulation of glycogen metabolism in C-6 astrocytoma and C-1300 neuroblastoma cells in culture has been investigated. Two modes of control of glycogen metabolism appear to be operative. The regulation of intracellular glycogen concentrations and the predominant forms of glycogen phosphorylase and glycogen synthase vary with (a) the available energy supply, and (b) altered intracellular concentration of cyclic adenosine 3':5'-monophosphate (cyclic AMP). Both cell lines respond to glucose in the medium; when glucose levels are high, glycogen is synthesized, glycogen phosphorylase a decreases, and glycogen synthase a increases. When glucose in the medium decreases to a critical level, the phosphorylase a increases and glycogen concentrations in the cells decrease in aprallel with the medium glucose. The critical glucose concentration is 2.5 mM for the astrocytoma cells and 4 mM for the neuroblastoma cells. Insulin promotes the conversion of phosphorylase to the b form and synthase to the a form in both cell lines. All of these changes occur without alteration in the intracellular cyclic AMP concentrations. When cyclic AMP concentrations are increased in either cell line, phosphorylase a is increased, synthase a is decreased, and glycogen concentrations decrease. Isobutyl methylxanthine is effective in promoting glycogenolysis in both cell lines. Norepinephrine is effective with the astrocytoma cells, and prostaglandin E1 is effective with the neuroblastoma cells.  相似文献   

5.
The GABAergic system was investigated in C-6 astrocytoma cells and C-1300 neuroblastoma cells in culture and compared to that in mouse brain. The activities of glutamate decarboxylase, GABA-transaminase, succinic semialdehyde dehydrogenase and glutamate dehydrogenase were measured. In the cultured cells, only glutamate dehydrogenase activity was equal or greater than that of mouse cerebral cortex. Glutamate decarboxylase in both cell lines was 2%, while GABA-transaminase and succinic semialdehyde dehydrogenase activities were less than 20% of those found in brain. In spite of the disparate enzyme activities, GABA, glutamate, and -ketoglutarate concentrations were similar in the cell lines and cerebral cortex. The anticonvulsant drugs sodium valproate and aminooxyacetic acid increased cortical GABA concentrations but either had no effect or decreased GABA in the cells in a complete medium. The convulsant isoniazid decreased GABA in mouse brain but had no effect in either cell line. In the absence of pyridoxal in the medium, some drug effects could be induced in the cultured cells. It is concluded that the differing responses of the GABAergic system in the mouse brain and cell lines may be attributed in part to the fact that the cells do not represent an integrated system and are of tumor origin.  相似文献   

6.
Acid phosphatase activity in human glioma cells (138 MG) and mouse neuroblastoma cells (C 1300) was associated with structures accumulating neutral red and acridine orange. Only neuroblastoma cells gave a significant positive histochemical reaction for alkaline phosphatase. Glioma and neuroblastoma cell homogenates exhibited maximal phosphatase activity at pH 5 as measured by spectrophotometer. The specific activity; μmoles phosphate released per hour/mg protein was 1.1 in glioma and 0.9 in neuroblastoma. At pH 8, glioma cells lacked activity whereas neuroblastoma cells showed another maximum. The acid phosphatase activity of both cell types was strongly inhibited by CuCl2 (0.3 mM) and NaF (10 mM) and moderately by -tartaric acid (10 mM). cGMP (1 mM) stimulated the phosphatase activity of both cell lines. db-cAMP, in serum-free medium, induced characteristic morphological changes of the cells studied. This process was unaffected by CuCl2, c-GMP and -tartaric acid. db-cAMP (1 mM) inhibited proliferation in both glioma and neuroblastoma cells during a 48 h incubation in serum-containing medium. This growth inhibition was associated with an increase in acid phosphatase activity of the glioma but not of the neuroblastoma cells.  相似文献   

7.
8.
1. Simultaneous quantification (HPLC and electrochemical detection) of biological extracts have shown dopamine, N-acetyl dopamine, tryptophan, 5-hydroxytryptamine, a 5-hydroxyindolacetic acid-like substance in nervous tissue and hemolymph of Blaberus craniifer and Periplaneta americana. 2. 5-Hydroxytryptophan was only detected in head and thoraco-abdominal nerve cord. 3. Octopamine, but not N-acetyl-5-HT was quantified in the hemolymph.  相似文献   

9.
10.
The kinetic parameters of monoamine oxidase (MAO; E.C 1.4.3.4) and catechol-O-methyltransferase (COMT; EC 2.1.1.6) were evaluated in extracts of adrenergic and non-adrenergic mouse neuroblastoma cells and in rat glioma cells. Using the naturally-occurring substrates tyramine, tryptamine, serotonin and norepinephrine, the affinity of MAO for a given substrate was independent of the presence of the catecholaminergic pathway or cell type used, with apparent Km values ranging from 8-14 microM for tryptamine to 510-580 microM for norepinephrine. The MAO activity in glioma cells was substantially greater than in either neuroblastoma clone, but Vmax values varied little with substrate among cell lines. Both the neuronal and glial COMT had a similar Km for 1-norepinephrine (200 microM); the corresponding Vmax values were also similar among the different cell lines, but represented only 2-10% of the maximal MAO activity. Neuroblastoma and glioma cells, when grown from early logarithmic to stationary phase, showed no significant changes in specific activity of either MAO or COMT. Growth of cells for 3 days with 1 mM-N6,O2'-dibutyryl adenosine-3',5'-cyclic monophosphate resulted in no marked change in either MAO or COMT activity. These results suggest that in neurons neither MAO nor COMT plays a major role in the type of transmitter inactivation that is analogous to that of acetylcholinesterase in cholinergic synapses. The occurrence of considerable MAO and acetylcholinesterase activities in glioma cells may indicate a role for these cells in neurotransmitter inactivation.  相似文献   

11.
In the previous paper, it was shown that the transport of lysine into astrocytes and astrocytoma cells obeys the classical enzyme kinetics. Although unmodulated lysine transport into both normal rat astrocytes and rat astrocytoma cells is somewhat slower than needed for observed growth in the culture, it is capable of a large degree of enhancement. Insulin increases the Vmax for lysine influx in astrocytes tenfold and in astrocytoma cells fivefold. Glutathione produces a Vmax enhancement of 80% for astrocytes and 70% for astrocytoma cells. gamma-Glutamyl hydrazide is a weak inhibitor of lysine transport. Diethyl maleate appears to break down the regulation of lysine transport and allows a large increase in lysine influx in both cell types studied. Basic amino acid analogues canaline and S-aminoethylcysteine are not potent inhibitors of lysine transport. Lysine efflux kinetics are slower for C6 cells than for astrocytes; this difference is abolished by diethyl maleate and by dithiothreitol.  相似文献   

12.
Whole body extracts of the two-spotted spider mite (Tetranychus urticae Koch) were analyzed using a 16-channel electrochemical array high performance liquid chromatography (HPLC)-based detection system that allows the simultaneous isolation and identification of a variety of biogenic amines. The spider mite extracts were found to contain the biogenic amines octopamine, dopamine, and 5-hydroxytryptamine (5-HT), as well as several precursors and metabolites including tyrosine, tyramine, tryptophan, and N-acetyl octopamine. Differences in the levels of biogenic amines were observed between eggs and the adult stages and between males and females. This is the first direct determination of biogenic amines in the Tetranychidae and the first demonstration of 5-HT in any mite species. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Homogenates of 5 neuroblastoma cell lines were found to produce prostaglandin products from exogenous [14C]arachidonate, with specific enzyme activities ranging from 60 to 365 pmol per min per mg protein. Under identical conditions a glial cell line was much less active. PGF and PGE2 were the major products from neuroblastoma cells, with PGF predominating in all cases. The prostaglandin synthesizing activity of neuroblastoma extracts was at least an order of magnitude higher than activities reported for endogenous prostaglandin synthesis in brain tissues. The pattern of products was similar to that achieved after incubation of a rat brain microsomal extract with [ [14C]arachidonate, although the enzyme activity of neuroblastoma was about 200-fold higher. The presence of a relatively high prostaglandin cyclooxygenase activity in cultured neuroblastoma cells is of particular interest in that these cells may be useful model systems for studies of some aspects of neuronal prostaglandin synthesis.  相似文献   

14.
Summary. The programmed cell death is a very complex mechanism involving many factors, among them the intracellular concentration of biogenic amines (BA) appears to be important for apoptosis triggering. The mitochondrial damage is imputable to hydrogen peroxide and aldehydes, produced by amine oxidases (AO)-mediated oxidation of BA. On the other hands, the apoptosis protection observed by high BA concentration appears to be related to their scavenger effect of ROS and/or their interaction with membrane pores. Also monoamine oxidase (MAO) inhibitors, like propargylamines, preserve the mitochondria integrity by inhibiting MAO and therefore the production of H2O2 and aldehydes and, as cations, by regulating membrane pores, like BA.As general conclusion, apoptosis is protected by high concentration of BA and/or other cations while it is favoured by ROS produced by AOs or other mechanisms.  相似文献   

15.
I Hilakivi 《Medical biology》1987,65(2-3):97-104
Neurophysiological, neurochemical and neuropharmacological evidence indicates that cerebral monoamines are important regulators of wakefulness and sleep besides cerebral amino acid-ergic and peptidergic systems. The cerebral monoamines noradrenaline, dopamine and acetylcholine are positively involved in electroencephalographic aspects of waking and paradoxical or REM sleep. A high level of noradrenergic transmission facilitates waking, and a lower, moderate level facilitates REM sleep. Serotonin is involved in the regulation of synthesis, storage and release of sleep inducing factors, and in the gating mechanisms of REM sleep. Histamine neurons play a role in the regulation of vigilance during waking state. These neurotransmitter systems are important targets for drug actions.  相似文献   

16.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

17.
18.
The effect of heat stress (38 degrees C) on the content of DL-beta-(3,4-dihydroxyphenyl)alanine (DOPA), dopamine, tyramine, octopamine, and their precursor Tyr was studied in adults of two lines of Drosophila virilis contrasting in their stress response. In individuals of line 101 responding to stress by a hormonal stress reaction, the contents of DOPA, dopamine, octopamine, and Tyr were lower than those of line 147 that did not respond to the stress. However, heat stress caused an increase in the contents of DOPA, dopamine, octopamine, and Tyr in line 101, whereas the equivalent titers in line 147 remain unchanged.  相似文献   

19.
Biogenic amines and division of labor in honey bee colonies   总被引:1,自引:0,他引:1  
Brain levels of dopamine, serotonin, and octopamine were measured in relation to both age-related division of labor and inter-individual differences in task specialization independent of age in honey bee colonies. The only differences among similarly aged bees performing different tasks were significantly lower levels of dopamine in food storers than comb builders and significantly lower levels of octopamine in soldiers than foragers, but soldiers also were slightly younger than foragers. Differences associated with age-related division of labor were stronger. Older bees, notably foragers, had significantly higher levels of all three amines than did younger bees working in the hive. Using social manipulations to unlink chronological age and behavioral status, octopamine was found to exhibit the most robust association between behavior and amine level, independent of age. Octopamine levels were significantly lower in normal-age nurses versus precocious foragers and overage nurses versus normal-age foragers, but not different in reverted nurses versus reversion colony foragers. Dopamine levels were significantly lower in normal-age nurses versus precocious foragers, but higher in reverted nurses versus reversion colony foragers. Serotonin levels did not differ in any of these comparisons. These correlative results suggest that octopamine is involved in the regulation of age-related division of labor in honey bees. Accepted: 10 February 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号