首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy-atom isotope effects for the N-demethylation of nicotine have been determined in vivo in static-phase biosynthetically incompetent plant cell cultures of Nicotiana species. A (2)H kinetic isotope effect of 0.587 and a (15)N kinetic isotope effect of 1.0028 were obtained. An identical (15)N kinetic isotope effect of 1.0032 was obtained for the nicotine analogue, N-methyl-2-phenylpyrrolidine. The magnitude of the (15)N heavy-atom isotope effect indicates that the fission of the CN bond is not rate limiting for demethylation. The theoretical calculation of heavy-atom isotope effects for a model of the reaction pathway based on cytochrome P450 best fits the measured kinetic isotope effect to the addition of hydroxyl ion to iminium to form N-hydroxymethyl, for which the computed (2)H- and (15)N kinetic isotope effects are 0.689 and 1.0081, respectively. This large inverse (2)H kinetic isotope effect is not compatible with the initial abstraction of the H from the methyl group playing a significant kinetic role in the overall kinetic limitation of the reaction pathway, since computed values for this step (4.54 and 0.9995, respectively) are inconsistent with the experimental data.  相似文献   

2.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY d-AMPHETAMINE   总被引:1,自引:1,他引:0  
Abstract— Between 1 and 4 h after rats received a single injection of d-amphetamine (15 mg/kg)(when brain polysomes are known to be disaggregated), the in vivo incorporation of [14C]lysine into trichloroacetic acid-precipitable brain protein was reduced by 28–48%. Incorporation of the 14C label into the protein present in a 100,000 g supernatant extract of whole brain was similarly reduced (by 44%). Amphetamine administration suppressed protein synthesis in rat cerebral cortex, cerebellum, hypothalamus, striatum, and brainstem to an equivalent extent. The drug did not significantly affect lysine pool sizes measured in these brain regions; thus the reduced incorporation of labeled lysine was not the result of an isotope dilution effect. We therefore conclude that the brain polysome disaggregation resulting from amphetamine administration is associated with decreased in vivo synthesis of some brain proteins.  相似文献   

3.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

4.
The transition state of adenosine nucleosidase (EC 3.2.2.7) isolated from yellow lupin (Lupinus luteus) was determined based upon a series of heavy atom kinetic isotope effects. Adenosine labeled with 13C, 2H, and 15N was analyzed by liquid chromatography/electrospray mass spectrometry to determine kinetic isotope effects. Values of 1.024+/-0.004, 1.121+/-0.005, 1.093+/-0.004, 0.993+/-0.006, and 1.028+/-0.005 were found for [1'-13C], [1'-2H], [2'-2H], [5'-2H], and [9-15N] adenosine, respectively. Using a bond order bond energy vibrational analysis, a transition state consisting of a significantly broken C-N bond, formation of an oxocarbenium ion in the ribose ring, a conformation of C3-exo for the ribose ring, and protonation of the heterocyclic base was proposed. This transition state was found to be very similar to the transition state for nucleoside hydrolase, another purine metabolizing enzyme, isolated from Crithidia fasciculata.  相似文献   

5.
N S Rotberg  W W Cleland 《Biochemistry》1991,30(16):4068-4071
Secondary 15N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these 15N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer [Cook, P. F., Oppenheimer, N. J. & Cleland, W. W. (1981) Biochemistry 20, 1817]. If this mechanism were valid, as N-1 becomes pyramidal an 15N isotope effect of up to 2-3% would be observed. In the present study the equilibrium 15N isotope effect for the reaction catalyzed by LADH was measured as 1.0042 +/- 0.0007. The kinetic 15N isotope effect for LADH catalysis was 0.9989 +/- 0.0006 for cyclohexanol oxidation and 0.997 +/- 0.002 for cyclohexanone reduction. The kinetic 15N isotope effect for FDH catalysis was 1.004 +/- 0.001. These values suggest that a significant 15N kinetic isotope effect is not associated with hydride transfer for LADH and FDH. Thus, in contrast with the deformation mechanism previously postulated, the pyridine ring of the nucleotide apparently remains planar during these dehydrogenase reactions.  相似文献   

6.
A stable isotope dilution method is described that allows measurement of cholic acid (CA) kinetics, that is, pool size, fractional turnover rate (FTR), and synthesis rate in mice, rats, and humans. Decay of administered [2,2,4,4-2H4]CA enrichment was measured in time in 50-microl plasma samples by gas-liquid chromatography/electron capture negative chemical ionization-mass spectrometry, applying the pentafluorobenzyl-trimethylsilyl derivative. The kinetic data expressed species-dependent differences. The CA pool sizes were 16.8 +/- 2.1, 10.6 +/- 1.2, and 2.4 +/- 0.7 micromol/100 g body weight for mice, rats, and humans, respectively. The FTR values were 0.44 +/- 0.03, 0.88 +/- 0.10, and 0.46 +/- 0.14 per day for mice, rats, and humans. The corresponding synthesis rates were 7.3 +/- 1.6, 9.3 +/- 0.1, and 1.0 +/- 0.2 micromol/100 g body weight per day. The human data agreed well with literature data obtained by conventional isotope dilution techniques. For rats and mice these are the first reported isotope dilution data. The method was validated by confirmation of isotopic equilibrium between biliary CA and plasma CA in the rat. Its applicability was demonstrated by the observation of increased CA FTR and CA synthesis rate in rats fed cholestyramine, which is known to increase fecal bile acid excretion. The presented stable isotope dilution method enables the determination of CA kinetic parameters in small plasma samples. The method can be applied in unanesthetized rodents with an intact enterohepatic circulation and may also be valuable when studying the development of human neonatal bile acid kinetics.  相似文献   

7.
The transition state of the Vmax mutant of AMP nucleosidase from Azotobacter vinelandii [Leung, H. B., & Schramm, V. L. (1981) J. Biol. Chem. 256, 12823-12829] has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the Km for substrate, the activation constant for MgATP, and the Ki for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s-1 to 1.2 s-1. The kinetic isotope effects were measured with the substrates [1'-3H]AMP, [2'-2H]AMP, [2'-2H]AMP, [9-15N]AMP, and [1',9-14C, 15N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. The kinetic isotope effect with [9-15N]AMP decreased from 1.034 +/- 0.002 to 1.021 +/- 0.002 in response to MgATP. The [1'-3H]AMP isotope effect increased from 1.086 +/- 0.003 to 1.094 +/- 0.002, while the kinetic isotope effect for [1',9-14C, 15N]AMP decreased from 1.085 +/- 0.003 to 1.070 +/- 0.004 in response to allosteric activation with MgATP. Kinetic isotope effects with [1'-14C]AMP and [2'-2H]AMP were 1.041 +/- 0.006 and 1.089 +/- 0.002 and were not changed by addition of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F2 alpha by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F2 alpha by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

9.
10.
A practical calculation procedure to correct the underestimatecaused by isotope dilution in 15N uptake experiments is described.The estimate is based on the experimental observation of 15Nincorporation into particuUtc organic matter but not on directmeasurement of isotope enrichment in the substrate. Conventionaldata sets of 15N uptake and an estimate of the ratio of theflux of regeneration and uptake can provide the informationneeded to correct for isotope dilution. Application of thismethod to 15NH4+ uptake data in the literature showed that theunderestimate is small in open ocean waters but sometimes substantialin coastal or estuarine waters.  相似文献   

11.
Adenosine 5'-phosphate was synthesized with specific heavy atom substitutions to permit measurement of V/K kinetic isotope effects for the N-glycohydrolase activity of the allosteric AMP nucleosidase and the acid-catalyzed solvolysis of these compounds. The effects of allosteric activation on the kinetic isotope effects together with the kinetic mechanism of AMP nucleosidase [DeWolf, W. E., Jr., Emig, F. A., & Schramm, V. L. (1986) Biochemistry 25, 4132-4140] indicate that the kinetic isotope effects are fully expressed. Comparison of individual primary and secondary kinetic isotope effects with combined isotope effects and the isotope effect of the reverse reaction indicated that kinetic isotope effects in AMP nucleosidase arise from a single step in the reaction mechanism. Under these conditions, kinetic isotope effects can be used to interpret transition-state structure for AMP nucleosidase. Changes in kinetic isotope effects occurred as a function of allosteric activator, demonstrating that allosteric activation alters transition-state structure for AMP nucleosidase. Kinetic isotope effects, expressed as [V/K(normal isotope]/[V/K(heavy isotope)], were observed with [2'-2H]AMP (1.061 +/- 0.002), [9-15N]AMP (1.030 +/- 0.003), [1'-2H]AMP (1.045 +/- 0.002), and [1'-14C]AMP (1.035 +/- 0.002) when hydrolyzed by AMP nucleosidase in the absence of MgATP. Addition of MgATP altered the [2'-2H]AMP effect (1.043 +/- 0.002) and the [1'-2H]AMP effect (1.030 +/- 0.003) and caused a smaller decrease of the 14C and 15N effects. Multiple heavy atom substitutions into AMP caused an increase in observed isotope effects to 1.084 +/- 0.004 for [1'-2H,1'-14C]AMP and to 1.058 +/- 0.002 for [9-15N,1'-14C]AMP with the enzyme in the absence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The 15N isotope dilution and A-value methods were used to measure biological nitrogen (N2) fixation in field grown fababean (Vicia faba L.), over a 2-year period. Four N rates, 20, 100, 200 and 400 kg N ha–1 were examined. The two isotope methods gave similar values of % N derived from the atmosphere (%Ndfa). With 20 kg N ha–1, %Ndfa in fababean was about 85% in both years. Increasing the N rate to 100 kg N ha–1 decreased N2 fixation slightly to 75%. Further reductions in N2 fixed to 60 and 43% occurred where 200 and 400 kg N ha–1 were applied, respectively. Thus even higher rates of N than normally applied in farming practice could not completely suppress N2 fixation in fababean.We also devised one equation for both the isotope dilution and A-value approaches, thereby (i) avoiding the need for different calculations for the 15N isotope methods, and (ii) showing once again that the isotope dilution and A-value methods are mathematically and conceptually identical.  相似文献   

13.
The in vivo nitrogen isotope discrimination among organic plant compounds   总被引:1,自引:0,他引:1  
The bulk delta 15 N-value of plant (leaf) biomass is determined by that of the inorganic primary nitrogen sources NO(3)(-), NH(4)(+) and N(2), and by isotope discriminations on their uptake or assimilation. NH(4)(+) from these is transferred into "organic N" mainly by the glutamine synthetase reaction. The involved kinetic nitrogen isotope effect does not become manifest, because the turnover is quantitative. From the product glutamine any further conversion proceeds in a "closed system", where kinetic isotope effects become only efficient in connection with metabolic branching. The central and most important corresponding process is the GOGAT-reaction, involved in the de novo nitrogen binding and in recycling processes like the phenylpropanoid biosynthesis and photorespiration. The reaction yields relatively 15N-depleted glutamate and remaining glutamine, source of 15N-enriched amide-N in heteroaromatic compounds. Glutamate provides nitrogen for all amino acids and some other compounds with different 15N-abundances. An isotope equilibration is not connected to transamination; the relative delta 15 N-value of individual amino acids is determined by their metabolic tasks. Relative to the bulk delta 15 N-value of the plant cell, proteins are generally 15N-enriched, secondary products like chlorophyll, lipids, amino sugars and alkaloids are depleted in 15N. Global delta 15 N-values and 15N-patterns of compounds with several N-atoms can be calculated from those of their precursors and isotope discriminations in their biosyntheses.  相似文献   

14.
The main ionization methods in a mass spectrometer for isotope ratio determinations of the elements are discussed in this review. These methods are thermal ionization, spark source, electron impact, inductively coupled plasma and field desorption. As concerns thermal ionization, electron impact and field desorption, a survey of the possibilities of isotope analyses in the periodic table of the elements is given. Besides kinetic studies, trace element determination by isotope dilution technique is the main application for isotope ratio measurements of the elements. The definitive method, isotope dilution mass spectrometry, is discussed as a potential tool for achieving accurate and precise trace analyses. Using field desorption mass spectrometry, one example of calcium kinetics in man and one example of thallium trace determination in an animal tissue are given. Other metal trace analyses with the isotope dilution technique are presented for biological and medical samples using positive thermal ionization mass spectrometry. Negative thermal ions are formed for the mass spectrometric analysis of non-metals and non-metal compounds in food samples, e.g. for iodine and nitrate in milk powder. Preliminary results with the isotope dilution technique are presented for a new quadrupole thermal ionization mass spectrometer which is a low-cost instrument and can be easily handled.  相似文献   

15.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

16.
The use of a rapid and sensitive assay for N-acetylaspartate (NAA) in urine or eluates from dried urine on filter paper to make a chemical diagnosis of Canavan disease (CD) is described. It involves a simplified urease pretreatment for sample preparation and gas chromatography-mass spectrometry (EI, scanning mode) with or without stable isotope dilution. Significant improvements in the recovery of NAA and the GC-MS data-handling device made the assay without stable isotope dilution sensitive and quantitative enough to diagnose CD: Its coefficient of variation (CV) was below 12%. The CV obtained with stable isotope dilution was below 9%. One patient with CD had an abnormal NAA level that was more than 6 S.D. above the mean of the age-matched controls. This diagnostic procedure is accurate for screening and for the chemical diagnosis of CD, with a good cost:benefit ratio. The urinary NAA levels of the healthy controls decreased significantly with age. This change should be considered in making a chemical diagnosis of this disease.  相似文献   

17.
Parikh SL  Schramm VL 《Biochemistry》2004,43(5):1204-1212
Bacterial protein toxins are the most powerful human poisons known, exhibiting an LD(50) of 0.1-1 ng kg(-)(1). A major subset of such toxins is the NAD(+)-dependent ADP-ribosylating exotoxins, which include pertussis, cholera, and diphtheria toxin. Diphtheria toxin catalyzes the ADP ribosylation of the diphthamide residue of eukaryotic elongation factor 2 (eEF-2). The transition state of ADP ribosylation catalyzed by diphtheria toxin has been characterized by measuring a family of kinetic isotope effects using (3)H-, (14)C-, and (15)N-labeled NAD(+) with purified yeast eEF-2. Isotope trapping experiments yield a commitment to catalysis of 0.24 at saturating eEF-2 concentrations, resulting in suppression of the intrinsic isotope effects. Following correction for the commitment factor, intrinsic primary kinetic isotope effects of 1.055 +/- 0.003 and 1.022 +/- 0.004 were observed for [1(N)'-(14)C]- and [1(N)-(15)N]NAD(+), respectively; the double primary isotope effect was 1.066 +/- 0.004 for [1(N)'-(14)C, 1(N)-(15)N]NAD(+). Secondary kinetic isotope effects of 1.194 +/- 0.002, 1.101 +/- 0.003, 1.013 +/- 0.005, and 0.988 +/- 0.002 were determined for [1(N)'-(3)H]-, [2(N)'-(3)H]-, [4(N)'-(3)H]-, and [5(N)'-(3)H]NAD(+), respectively. The transition state structure was modeled using density functional theory (B1LYP/6-31+G) as implemented in Gaussian 98, and theoretical kinetic isotope effects were subsequently calculated using Isoeff 98. Constraints were varied in a systematic manner until the calculated kinetic isotope effects matched the intrinsic isotope effects. The transition state model most consistent with the intrinsic isotope effects is characterized by the substantial loss in bond order of the nicotinamide leaving group (bond order = 0.18, 1.99 A) and weak participation of the attacking imidazole nucleophile (bond order = 0.03, 2.58 A). The transition state structure imparts strong oxacarbenium ion character to the ribose ring even though significant bond order remains to the nicotinamide leaving group. The transition state model presented here is asymmetric and consistent with a dissociative S(N)1 type mechanism in which attack of the diphthamide nucleophile lags behind departure of the nicotinamide.  相似文献   

18.
P Le Maréchal  R Azerad 《Biochimie》1976,58(9):1123-1128
The conversion of 3-deoxy D-arabino heptulosonate 7-phosphate to 3-dehydroquinate by the 3-dehydroquinate synthetase from E. coli is characterized by a low but significant kinetic isotope effect for tritium carried in position-5 of DAHP, while no isotope effect was detectable for tritium in position-4. This effect was observed at different pH nad is interpreted as a result of theintermediary of a 5-ketonic form of the substrate, formed in a preliminary non limiting step during the enzymic cyclization reaction. A tentative scheme for the 3-DHQ synthetase reaction is proposed involving five steps: oxidation by NAD+ in position-5, phsophate elimination after enolization, reduction with precedently formed NADH and cyclization by attack of the 2-carbonyl by the C-7 methylene group.  相似文献   

19.
A modified method of isotope dilution was applied to the quantitative determination of peptides and proteins by MALDI MS at subpicomolar level. The essence of the method consists in the quantitative analysis of the enzymic hydrolysis products rather than the starting compounds. This allows the measurements to be performed at a higher resolution and makes the method independent of the molecular mass of oligopeptides and proteins examined. Fragments obtained by hydrolysis of the same oligopeptide or protein in a known concentration by the same enzyme and labeled with the stable 18O isotope are used as internal standards. The label is introduced by carrying out the hydrolysis in H(2)18O, and the oligopeptide concentration is calculated from the isotope distribution between the labeled and unlabeled hydrolysis products in the mass spectrum. This method was tested in the determination of concentrations of the angiotensinogen (1-14) fragment (oligopeptide), extracellular RNAase from Bacillus amyloliquefaciens (protein) and its protein inhibitor, barstar M. Usefulness of this method in kinetic studies was also demonstrated.  相似文献   

20.
Huege J  Sulpice R  Gibon Y  Lisec J  Koehl K  Kopka J 《Phytochemistry》2007,68(16-18):2258-2272
The established GC-EI-TOF-MS method for the profiling of soluble polar metabolites from plant tissue was employed for the kinetic metabolic phenotyping of higher plants. Approximately 100 typical GC-EI-MS mass fragments of trimethylsilylated and methoxyaminated metabolite derivatives were structurally interpreted for mass isotopomer analysis, thus enabling the kinetic study of identified metabolites as well as the so-called functional group monitoring of yet non-identified metabolites. The monitoring of isotope dilution after (13)CO(2) labelling was optimized using Arabidopsis thaliana Col-0 or Oryza sativa IR57111 plants, which were maximally labelled with (13)C. Carbon isotope dilution was evaluated for short (2h) and long-term (3 days) kinetic measurements of metabolite pools in root and shoots. Both approaches were shown to enable the characterization of metabolite specific partitioning processes and kinetics. Simplifying data reduction schemes comprising calculation of (13)C-enrichment from mass isotopomer distributions and of initial (13)C-dilution rates were employed. Metabolites exhibited a highly diverse range of metabolite and organ specific half-life of (13)C-label in their respective pools ((13)C-half-life). This observation implied the setting of metabolite specific periods for optimal kinetic monitoring. A current experimental design for the kinetic metabolic phenotyping of higher plants is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号