首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T3238fer (Fe-inefficient) and T3238FER (Fe-efficient) tomato plants differ in their ability to utilize Fe and therefore can be used as test genotypes to locate sites of Fe uptake or to characterize changes that occur in roots in response to Fe stress (Fe deficiency). T3238fer does not respond to Fe stress. Release of hydrogen ions and reduction of Fe3+ to Fe2+ are two primary responses of T3238FER roots to Fe stress. Fe reduction sites were predominately in the young lateral roots, and between the regions of root elongation and maturation of the primary root. The use of BDPS (bathophenanthrolinedisulfonate) to trap Fe2+ did not affect the release of H+ ions or reduction by T3238FER roots. BPDS did not decrease Fe uptake until it exceeded the Fe concentration in the nutrient solution. A sevenfold increase in BPDS caused a threefold decrease in Fe taken up by the plant. Fe3+ is reduced to Fe2+ at root sites accessible to BPDS. Adding Zn decreased the response to Fe stress. Iron stress initiates the development of lateral roots, and we propose that most Fe enters the plant through these roots. The iron moves through protoxylem into the metaxylem of the primary root and then to the top of the plant as Fe citrate. Root environmental factors that are competitive or inhibit Fe-stress response, or genotypes that fail to respond to Fe stress, contribute to the development of Fe deficiency in plants.  相似文献   

2.
Calcicolous plants are generally more Fe-efficient than calcifugous plants, because they respond to Fe stress by releasing H-ions and “reductants” from their roots that causes Fe to become available. The objective of our study was to determine if differential response to Fe stress in calcicolous and calcifugous varieties affects nitrate reductase activity. T3238FER (Fe-efficient) and T3238fer (Fe-inefficient) tomato (Lycopersicon esculentum Mill.) cultivars were grown in nutrient solutions supplied with N as NH4+-N plus NO3?-N, and as NO3?-N only. The chemical reactions induced by Fe stress concomitantly increased nitrate reductase activity in roots and tops of calcicolous, but not in calcifugous tomato. This nitrate reductase activity decreased, however, when Fe was made available to the plants. When Fe stress was eliminated by adding Fe, nitrate reductase activity was comparable in the two cultivars.  相似文献   

3.
A New Tomato Mutant Inefficient in the Transport of Iron   总被引:11,自引:0,他引:11  
An Fe-inefficient tomato mutant, T3238fe (Lycopersicon esculentum) was identified by growing the plants in solution cultures containing different concentrations of FeHEDTA. Approach grafts of T3238Fe (Fe-efficient) top on T3238fe rootstock and vice versa, located the cause of Fe inefficiency in T3238fe roots. The T3238Fe tomato takes up more Fe than T3238fe and it responds favorably to Fe-stress by releasing hydrogen ions from its roots, increasing reduction of Fe3+ to Fe2+ at its roots, and increasing the citrate concentration in its roots. T3238fe showed very little response to Fe stress; it was unable to absorb and transport adequate Fe from PeEDDHA to support growth.  相似文献   

4.
5.
6.
Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO?? accumulated more Cd than plants fed NH??. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO??. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO?? and NH?? treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO??-facilitated Cd accumulation in plants.  相似文献   

7.
8.
Plants with different Fe-mobilization properties are known to differ in the amount and kind of Fe-reducing and Fe-chelating compounds exuded by their roots. Although rhizosphere bacteria are known to affect the exudation of organic compounds by the plant roots, their effect on the root exudates of plants differing in Fe-mobilization properties is not known. We studied the effect of Pseudomonas fluorescens, on the exudation of sugars and organic and amino acids by roots of an iron chlorosis-resistant (T3238FER) and a chlorosis-susceptible (T3238fer) tomato mutant. Under sterile conditions two tomato mutants grew equally well and did not differ in the total amount of sugars and organic acid exuded by their roots. More amino acids, however, were exuded by the roots of T3238FER than T323fer. Mutants differed in the amount of oxalic acid and the amino acids Ala, Asp, Gaba, Gln, Gly, His, Hyl, Ile, Leu, Lys, Phe, Pro, and Val exuded by their roots into sterile rooting media. Addition of P. fluorescens to the rooting medium did not affect the growth of T3238FER but stimulated the root growth of chlorosis-susceptible T3238fer, reduced the amounts of glucose, arabinose and fructose but increased the amount of sucrose, reduced the amounts of fumaric, malic and oxalic acid but increased the amounts of citric and succinic acid in the rooting media of both mutants. P. fluorescens resulted in the following changes in the amino acids in the rooting media: reduced the amounts of Gly, Leu, and Lys in T3238FER, and of Asp, Gln, Hyp, and Ile in T3238fer, and increased the amounts of Cys, Glu, His, Hyp, Ile, Phe and Tyr in T3238FER and of Ala, Glu, His, Phe, and Ser in T323fer—in cases more than 40-fold. These differential effects of P. fluorescens in altering the pattern of organic and amino acids compounds with some Fe-chelating properties detected in the rooting medium of these two mutants may indicate that the differences in Fe-chlorosis susceptibility of these tomato mutants may be the result of, or modified by, the interactions between plant roots and rhizosphere microorganisms. We postulate that the Fe-chlorosis susceptibility in plants may be the product of the interactions between soil microorganisms and plant roots, and may not be solely related to the plant per se.  相似文献   

9.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

10.
Kovács K  Kuzmann E  Tatár E  Vértes A  Fodor F 《Planta》2009,229(2):271-278
Distinct chemical species of iron were investigated by Mössbauer spectroscopy during iron uptake into cucumber roots grown in unbuffered nutrient solution with or without 57Fe-citrate. Mössbauer spectra of iron deficient roots supplied with 10–500 μM 57Fe-citrate for 30–180 min and 24 h and iron-sufficient ones, were recorded. The roots were analysed for Fe concentration and Fe reductase activity. The Mössbauer parameters in the case of iron-sufficient roots revealed high-spin iron(III) components suggesting the presence of FeIII-carboxylate complexes, hydrous ferric oxides and sulfate–hydroxide containing species. No FeII was detected in these roots. However, iron-deficient roots supplied with 0.5 mM 57FeIII-citrate for 30 min contained significant amount of FeII in a hexaaqua complex form. This is a direct evidence for the Strategy I iron uptake mechanism. Correlation was found between the decrease in Fe reductase activity and the ratio of FeII–FeIII components as the time of iron supply was increased. The data may refer to a higher iron reduction rate as compared to its uptake/reoxidation in the cytoplasm in accordance with the increased reduction rate in iron deficient Strategy I plants.  相似文献   

11.
12.
13.
14.
The objective of this study was to identify the sites of H-ion exudation and Fe(III) reduction along both inoculated and non-inoculated roots of A7 and T203 soybeans. A split-root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Expectedly, the Fe-stress response was strong on both sides of the split-root system in the +N-Fe treatment of variety A7 (inactive nodules) but not of variety T203. The Fe-stress response of A7 was enhanced by the presence of active nodules. Variety T203 is Fe inefficient and normally fails to produce any Fe-stress response, but in the absence of nitrogen and iron (–N–Fe), inoculated roots responded to Fe stress with exudation of both H-ions and reductants. Intact split-root systems were embedded in agar to determine the location of H-ion exudation and Fe(III) reduction. On the inoculated side of the –N–Fe and –N+Fe treatments (active nodules) of both soybean varieties, H-ion production was associated mainly with the active nodules. However, quantities of H-ion release were much greater under Fe stress (–N–Fe) than with adequate Fe (–N+Fe). Reduction of Fe(III) to Fe(II) was found only on the nodulated side with T203, but on both sides with A7. In variety T203 the Fe reduction was associated with younger roots located just below the nodule clusters on the inoculated side of the –N treatments. Active nodules appear to play a key role in the Fe-deficiency stress response of T203 soybean.  相似文献   

15.
DELAP  ANNE V. 《Annals of botany》1970,34(4):911-918
Apple rootstocks were grown with either 0.02 ppm Fe (Fe0) or5 ppm (Fe3), to give very chlorotic or dark-green plants. Toinvestigate whether iron can be supplied through leaves insteadof roots the shoots of half the plants in each treatment weredipped periodically in solutions of iron. This prevented chlorosisin Fe0 plants and increased their growth, which did not, however,equal that of Fe3 plants supplied with iron through the roots.Growth of Fe3 plants was reduced by dipping. Iron was not translocated from leaves to roots, although theconcentration in leaves was greatly increased by dipping. Dippingreduced the amount of manganese in Fe0 roots to one-quarterof that in roots of undipped Fe0 plants. Effects of treatmentson nitrogen, potassium, calcium, magnesium, and copper levelsare also described.  相似文献   

16.
Zusammenfassung Junge Sonnenblumenpflanzen nahmen 8 Std. lang nicht markiertes und danach 15 Std. lang mit Fe59 markiertes Eisen in Form von Fe-Chlorid, Fe-EDTA oder Fe-Citrat auf. 1. Bei allen drei Eisenformen absorbierten die Pflanzenwurzeln mehr Eisen aus der N?hrl?sung mit 0,1 ppm Fe als aus der mit 1,0 ppm Fe. 2. Die Wurzeln der mit Fe-Chlorid ern?hrten Pflanzen enthalten den h?chsten Gehalt an Fe59. 3. Das Stengelexsudat der 0,1 ppm Fe-Reihe enthielt weniger Fe59 als das Exsudat der 1,0 ppm Fe-Reihe. 4. Eine sichere Beziehung zwischen der Ern?hrung mit den verschiedenen drei Eisenformen und der ausgeschiedenen Exsudatmenge konnte nicht festgestellt werden. Ebenfalls bestand kein Zusammenhang zwischen der ausgeschiedenen Exsudatmenge und ihrem Fe59-Gehalt. 5. Der Gehalt des Stengelexsudats an Fe59 war bei der Ern?hrung mit Fe-EDTA und Fe-Citrat h?her als bei Fe-Chlorid.
Relationships between iron uptake and iron transport in plants
Summary The uptake of unlabelled iron for 8 h and of Fe59, given as Fe chloride, Fe EDTA and Fe citrate for 15 h, was investigated in young sunflower plants. 1. In all three iron forms the roots absorbed more iron from the nutrient solution with 0.1 ppm Fe than with 1.0 ppm Fe. 2. The roots of those plants, supplied with Fe-chloride contained the highest amount of Fe59. 3. The stem exudate of plants, given a nutrient solution with 0.1 ppm Fe contained less Fe59 than the exudate of plants, grown in a nutrient solution containing 1.0 ppm Fe. 4. No close relationship between the nutrition with the three iron forms and the produced amount of exudate could be established. Furthermore no correlation between the produced amount of exudate and its Fe59 content could be found. 5. The content of Fe59 in the stem exudate was higher when Fe EDTA and Fe citrate were given as compared with Fe chloride.


Auszug aus der Dissertation des Verfassers.  相似文献   

17.
The uptake and accumulation of iron in cucumber roots exposed to cadmium were investigated with Fe sufficient and deficient cucumber plants using Mössbauer spectroscopy, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and ferric chelate reductase activity measurements. Both Fe sufficient and Fe deficient plants were applied. In the case of Fe sufficient cucumber roots grown in nutrient solution with 10 μM Cd no changes were found in the occurrence of Fe species (mostly hydrous ferric oxides and ferric-carboxylate complexes) compared to the control where no Cd was added. In the Fe deficient roots pretreated with 0, 0.1, 1, 10 and 100 μM Cd for 3 h then supplied also with 0.5 mM 57Fe-citrate for 30 min, FeII was identified in a hexaaqua complex form. The relative amount of FeII was decreasing simultaneously with increasing Cd concentration, while the relative occurrence of FeIII species and total Fe concentration were increasing. The results support the inhibitory effect of Cd on Fe-chelate reduction. Although the reductase activity at 10 and 100 μM Cd treatment was lower than in the iron sufficient control plants, FeII could be identified by Mössbauer spectroscopy whereas in the Fe sufficient control, this form was below detection limit. These data demonstrate that the influx and the reoxidation of FeII was decreased by Cd, consequently, they refer to the competition of Cd2+ and Fe2+ during the membrane transport and the inhibition of the reoxidation process.  相似文献   

18.
Roots of grasses in response to iron deficiency markedly increase the release of chelating substances (`phytosiderophores') which are highly effective in solubilization of sparingly soluble inorganic FeIII compounds by formation of FeIIIphytosiderophores. In barley (Hordeum vulgare L.), the rate of iron uptake from FeIIIphytosiderophores is 100 to 1000 times faster than the rate from synthetic Fe chelates (e.g. Fe ethylenediaminetetraacetate) or microbial Fe siderophores (e.g. ferrichrome). Reduction of FeIII is not involved in the preferential iron uptake from FeIIIphytosiderophores by barley. This is indicated by experiments with varied pH, addition of bicarbonate or of a strong chelator for FeII (e.g. batho-phenanthrolinedisulfonate). The results indicate the existence of a specific uptake system for FeIIIphytosiderophores in roots of barley and all other graminaceous species. In contrast to grasses, cucumber plants (Cucumis sativus L.) take up iron from FeIIIphytosiderophores at rates similar to those from synthetic Fe chelates. Furthermore, under Fe deficiency in cucumber, increased rates of uptake of FeIIIphytosiderophores are based on the same mechanism as for synthetic Fe chelates, namely enhanced FeIII reduction and chelate splitting. Two strategies are evident from the experiments for the acquisition of iron by plants under iron deficiency. Strategy I (in most nongraminaceous species) is characterized by an inducible plasma membrane-bound reductase and enhancement of H+ release. Strategy II (in grasses) is characterized by enhanced release of phytosiderophores and by a highly specific uptake system for FeIIIphytosiderophores. Strategy II seems to have several ecological advantages over Strategy I such as solubilization of sparingly soluble inorganic FeIII compounds in the rhizosphere, and less inhibition by high pH. The principal differences in the two strategies have to be taken into account in screening methods for resistance to `lime chlorosis'.  相似文献   

19.
20.
Summary In comparing two populations of E. viminalis observations indicated that plants of a calcareous population (i) showed a greater yield at high pH, and when subjected to Fe-stress, (ii) took longer to develop chlorosis, (iii) more quickly developed new roots, and (iv) were capable of removing more Fe from solution than were plants of an acid population. Some Fe-stressed plants also appeared to be able to reduce Fe3+ to Fe2+, but population differences have not yet been clearly established. Plants from an acidic population accumulated very high levels of P in leaves when grown in alkaline solutions and, consequently, exhibited high P/Fe ratios, chlorosis, and symptoms of P toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号