首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m2/minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.  相似文献   

2.
The causes and consequences of flower constancy have been thefocus of many studies, but almost all have examined the foragingbehavior of bumblebees, honeybees, or butterflies. We test whetherconstancy occurs in an overlooked group of pollinators, thesyrphid flies. Foraging sequences of wild flies of two species,Episyrphus balteatus and Syrphus ribesii were examined whenvisiting flowers in seminatural plant communities and in artificialarrays of two color morphs of Lobularia maritima planted ata range of frequencies. Both species exhibited marked floralconstancy when foraging in the mixed-plant community. Becauseall groups of pollinating insect so far examined exhibit constancyat least under some circumstances, we suggest that this is thepredominant strategy used by pollinators and that there is probablya common explanation. Neither syrphid species exhibited constancyto different color morphs within a plant species, in contrastto previously published studies of Hymenoptera foraging amongpolymorphic flowers, which all describe positive frequency-dependentselection. Possible explanations for this discrepancy are discussed.We argue that constancy in these syrphids is unlikely to resultfrom learning constraints on handling ability, currently themost widely accepted explanation for flower constancy, becausethey forage primarily for pollen which is easily located inmostflowers they visit.  相似文献   

3.
Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.  相似文献   

4.
Understanding how urbanization alters functional interactions among pollinators and plants is critically important given increasing anthropogenic land use and declines in pollinator populations. Pollinators often exhibit short‐term specialization and visit plants of the same species during one foraging trip. This facilitates plant receipt of conspecific pollen—pollen on a pollinator that is the same species as the plant on which the pollinator was foraging. Conspecific pollen receipt facilitates plant reproductive success and is thus important to plant and pollinator persistence. We investigated how urbanization affects short‐term specialization of insect pollinators by examining pollen loads on insects’ bodies and identifying the number and species of pollen grains on insects caught in urban habitat fragments and natural areas. We assessed possible drivers of differences between urban and natural areas, including frequency dependence in foraging, species richness and diversity of the plant and pollinator communities, floral abundance, and the presence of invasive plant species. Pollinators were more specialized in urban fragments than in natural areas, despite no differences in the species richness of plant communities across site types. These differences were likely driven by higher specialization of common pollinators, which were more abundant in urban sites. In addition, pollinators preferred to forage on invasive plants at urban sites and native plants at natural sites. Our findings reveal indirect effects of urbanization on pollinator fidelity to individual plant species and have implications for the maintenance of plant species diversity in small habitat fragments. Higher preference of pollinators for invasive plants at urban sites suggests that native species may receive fewer visits by pollinators. Therefore, native plant species diversity may decline in urban sites without continued augmentation of urban flora or removal of invasive species.  相似文献   

5.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

6.
According to Darwin, the reciprocal position of sexual whorls in heterostylous plants enhances disassortative pollen transfer between different floral morphs. It is believed that greater reciprocity between morphs will promote more efficient transfer of pollen. Additionally, efficient pollination will act as a selective force in achieving greater reciprocity between floral morphs. In this study we test whether variation in reciprocity of sexual organs between morphs is related to the efficiency of pollinators in transferring pollen between them. To do this, we first describe the pollinator??s array in several populations of species of the genus formerly known as Lithodora, which have different types of stylar polymorphism and degrees of reciprocity, and determine their abundance, plant visitation rate, number of flowers visited per plant and handling time in the population. We estimate the efficiency of the pollinator arrays by use of an approximation based on qualitative (location of pollen loads on different areas of insect bodies) and quantitative (plant visitation rate) measurements. Our results show a correlation between the degree of reciprocity and the efficiency of pollinators associated with the populations. These observations suggest that pollinators are a possible selective force driving the evolution of heterostyly.  相似文献   

7.
Pollinator-mediated reproductive isolation is often a principal factor in determining the rate of hybridization between plant species. Pollinator preference and constancy can reduce interspecific pollen transfer between otherwise interfertile, coflowering species. The importance of this ethological isolation can be assessed by comparing the strength of preference and constancy of pollinators in contact sites that differ in the frequency of hybrid individuals. We observed visitation by hummingbirds and hawkmoths in natural single-species patches and artificial mixed-species arrays in two Ipomopsis aggregata/I. tenuituba contact sites-one with few hybrids, and one in which hybrids are abundant. Pollinator preference and constancy were stronger at the low-frequency hybrid site, especially for hawkmoths (Hyles lineata). Hawkmoths at the low-frequency hybrid site showed significant preference and constancy for I. tenuituba, while at the high-frequency site hawkmoths visited both species equally. One hypothesis that might explain these differences in hawkmoth foraging is that warmer nights at the low-frequency hybrid site allow for nocturnal foraging where the light-colored corollas of I. tenuituba have a visibility advantage. These differences in hawkmoth behavior might in turn affect hummingbirds differently at the two sites, through changes in nectar resources, leading to greater pollinator-mediated isolation at the low-frequency hybrid site. Our results suggest that differences in pollinator behaviors between sites can have both direct and indirect effects on hybridization rates between plant species.  相似文献   

8.
For a new, more complex floral form to become established in a population it must overcome the problem of frequency-dependent constancy to successfully attract pollinators. This may be achieved by complex floral forms offering absolute greater rewards than the simpler forms, or by complex flowers offering a higher probability of being rewarding because fewer pollinators are able to visit them. In this paper we examine the effect of three pollinator foraging strategies on the ratio of flights within and between floral morphs and hence on the probability of a new morph establishing in a population without offering a greater reward. We incorporate pollinator behaviour based around observations of two pollinator species systems into three models of competition for pollinators. In the first model the constancy of the pollinator of the new floral morph is a function only of the foraging strategy of the existing pollinator of the original floral morph. In the next model the constancy of the second pollinator is determined by the number of rewarding flowers of each floral morph left by the original pollinator and in the third model it is determined by the ratio of rewarding flowers of each morph left by the original pollinator. The results demonstrate that under conditions of intense competition for pollinators, new, more complex floral forms are indeed able to attract high levels of constant pollinators without offering intrinsically higher rewards. However, for this to occur constancy in one of the pollinators must be a function of the ratio of rewarding to non-rewarding flowers of both floral forms. One prediction from our results is that sympatric speciation of floral complexity based on a higher probability of reward is more likely to occur in flowers offering rewards of pollen rather than nectar. This is because the cost of visiting non-rewarding flowers is usually higher where the reward is pollen rather than nectar. We also predict that complex flowers occurring at low frequency, which offer rewards of nectar, may need intrinsically greater rewards if they are to successfully attract pollinators.  相似文献   

9.

Background

Trapline foraging (repeated sequential visits to a series of feeding locations) has been often observed in pollinators collecting nectar or pollen from flowers. Although field studies on bumble-bees and hummingbirds have clarified fundamental aspects of this behaviour, trapline foraging still poses several difficult questions from the perspectives of both animals and plants. These questions include whether and how traplining improves foraging performance, how animals develop traplines with accumulating foraging experience, and how traplining affects pollen flow or plant reproduction.

Scope

First, we review our previous work performed by using computer simulations and indoor flight-cage experiments with bumble-bees foraging from arrays of automated feeders. Our findings include the following: (1) traplining benefits foragers that are competing for resources that replenish in a decelerating way, (2) traplining is a learned behaviour that develops over a period of hours and (3) the establishment of traplines could be hampered by spatial configuration of plants such as zigzags. Second, using a simulation model linking pollinator movement and pollen transfer, we consider how service by pollinators with different foraging patterns (searchers or trapliners) would affect pollen flow. Traplining increases mating distance and mate diversity, and reduces ‘iterogamy’ (self-pollination caused by return visits) at the population level. Furthermore, increased visitation rates can have opposite effects on the reproductive success of a plant, depending on whether the visitors are traplining or searching. Finally, we discuss possible consequences of traplining for plants in the light of new experimental work and modelling.

Conclusions

We suggest that trapline foraging by pollinators increases variation among plant populations in genetic diversity, inbreeding depression and contributions of floral traits to plant fitness, which should in turn affect the rates and directions of floral evolution. More theoretical and empirical studies are needed to clarify possible outcomes of such a neglected side of pollination.Key words: Artificial flower, Bombus, competition, floral evolution, foraging experience, iterogamy, model, pollen flow, pollinator movement, renewing resource, spatial memory, trapline foraging  相似文献   

10.
Gynodioecy is a dimorphic breeding system in which female individuals coexist with hermaphroditic individuals in the same population. Females only contribute to the next generation via ovules, and many studies have shown that they are usually less attractive than hermaphrodites to pollinators. Several mechanisms have been proposed to explain how females manage to persist in populations despite these disadvantages. The ‘resource reallocation hypothesis’ (RRH) states that females channel resources not invested in pollen production and floral advertisement towards the production of more and/or larger seeds. We investigated pollination patterns and tested the RRH in a population of Thymus vulgaris. We measured flower display, flower size, nectar production, visitation rates, pollinator constancy and flower lifespan in the two morphs. In addition, we measured experimentally the effects of pollen and resource addition on female reproductive success (fruit set, seed set, seed weight) of the two morphs. Despite lower investment in floral advertisement, female individuals were no less attractive to pollinators than hermaphrodites on a per flower basis. Other measures of pollinator behaviour (number of flowers visited per plant, morph preference and morph constancy) also showed that pollinators did not discriminate against female flowers. In addition, stigma receptivity was longer in female flowers. Accordingly, and contrary to most studies on gynodioecious species, reproductive success of females was not pollen limited. Instead, seed production was pollen limited in hermaphrodites, suggesting low levels of cross‐pollination in hermaphrodites. Seed production was resource limited in hermaphrodites, but not in females, thus providing support for the RRH. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 395–408.  相似文献   

11.
Most plant species are pollinated by animals, mainly insects, who adjust their foraging behaviour to the spatial distribution of rewards. Any changes in rewards of individual plants could then affect pollen dispersal at the level of plant patches or populations. Such change in floral rewards often results from infection by plant pathogens, for example by anther smuts (i.e. no pollen and reduced nectar in diseased flowers). Here, we tested the hypothesis that the infection of plant populations by anther smuts affects the pattern of pollen dispersal.We investigated the patterns of pollen dispersal in experimental arrays of potted plants differing in the presence of diseased plants and the degree of plant spatial aggregation. We tracked pollen dispersal using a fluorescent dye powder as a pollen analogue, while we simultaneously observed pollinator foraging behaviour.We found that the dispersal of the pollen analogue increased in the presence of diseased plants in experimental arrays, but this effect was strongly dependant on plant spatial aggregation. The parallel observations of pollinator behaviour suggest that this pattern resulted from pollinator discrimination against diseased plants and increased movement in arrays with intermingled diseased plants, provided that plant clusters were close to each other.Our study indicates that pollinators respond to diseased plants in a similar way as to healthy plants with low rewards. Consequently, diseased plants should be treated not only as a potential source of infection but also as a factor influencing pollen dispersal in plant populations.  相似文献   

12.
Variation in flower color, particularly polymorphism, in which two or more different flower color phenotypes occur in the same population or species, may be affected or maintained by mechanisms that depend on pollinators. Furthermore, variation in floral display may affect pollinator response and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. To asses if flower color polymorphism and floral display influences pollinator preferences and movements within and among plants and fitness-related variables we used the self-incompatible species Cosmos bipinnatus Cav. (Asteraceae), a model system with single-locus flower color polymorphism that comprises three morphs: white (recessive homozygous), pink (heterozygous co-dominate), and purple (dominant homozygous) flowers. We measured the preferences of pollinators for each morph and constancy index for each pollinator species, pollination visitation rate, floral traits, and female fitness measures. Flower color morphs differed in floral trait measures and seed production. Pollinators foraged nonrandomly with respect to flower color. The most frequent morph, the pink morph, was the most visited and pollinators exhibited the highest constancy for this morph. Moreover, this morph exhibited the highest female fitness. Pollinators responded strongly to floral display size, while probed more capitulums from plants with large total display sizes, they left a great proportion of them unvisited. Furthermore, total pollinator visitation showed a positive relation with female fitness. Results suggest that although pollinators preferred the heterozygous morph, they alternate indiscriminately among morphs making this polymorphism stable.  相似文献   

13.
  • The coevolution of insect pollinators and their host plants is a typical example of natural selection; however, how insect pollinators avoid overdependence on one peculiar plant remains unclear. As most insect pollinators exhibit a diet breadth when showing flower constancy, determining the difference and similarity of most and less preferred flowers by insect pollinators may be helpful to understand their trade-off between flower constancy and overdependence.
  • This was addressed using the long-proboscid tangle-veined fly (Nemetrinus spp.). Dietary investigation indicates that the flies show constancy for the morphological characteristic of the Delphinium caeruleum, which is the most preferred plant for this Nemestrinidae fly that has blue, long-tubed flowers.
  • In a colour selection experiment, focal individuals showed obvious preference for white, which is the colour of less preferred flowers by the fly in the natural environment. In a scent selection experiment, focal individuals showed obvious preference for D. caeruleum and Dracocephalum heterophyllum but avoidance to Dasiphora fruticosa and Dasiphora davurica. This indicates that long-proboscid tangle-veined flies can forage on other flowers, despite the existing constancy for D. caeruleum, as long as they do not hate the scent. It seems that long-proboscid tangle-veined flies can maximise foraging efficiency by showing constancy for the morphological characteristic of the most preferred plant and for the scent and colour of less-preferred plants.
  • The trade-off of long-proboscid tangle-veined flies in the selection of nectar sources may be an adaptation to the risk of overdependence on one plant in evolution.
  相似文献   

14.
The pattern of pollinator movements determines the dynamics of the pollen transfer between zoophilic plants. The structure of plant populations depends on this aspect of the pollinator foraging behavior. A new method for the estimation of the rate of moving away from an object was used for a more precise determination of the distance at which pollinators transfer pollen. The method is based on the measuring of distances covered by pollinators per several flights. The highest rate was found in hoverflies (Diptera, Syrphidae). Butterflies (Pieris brassicae) play an insignificant role in long-distance pollen transfers due to their circular movements.  相似文献   

15.
Establishment of polyploid individuals within diploid populations is theoretically unlikely unless polyploids are reproductively isolated, pre-zygotically, through assortative pollination. Here, we quantify the contribution of pollinator diversity and foraging behaviour to assortative pollen deposition in three mixed-ploidy populations of Chamerion angustifolium (Onagraceae). Diploids and tetraploids were not differentiated with respect to composition of insect visitors. However, foraging patterns of the three most common insect visitors (all bees) reinforced assortative pollination. Bees visited tetraploids disproportionately often and exhibited higher constancy on tetraploids in all three populations. In total, 73% of all bee flights were between flowers of the same ploidy (2x–2x, 4x–4x); 58% of all flights to diploids and 83% to tetraploids originated from diploid and tetraploid plants, respectively. Patterns of pollen deposition on stigmas mirrored pollinator foraging behaviour; 73% of all pollen on stigmas (70 and 75% of pollen on diploid and tetraploid stigmas, respectively) came from within-ploidy pollinations. These results indicate that pollinators contribute to high rates of pre-zygotic reproductive isolation. If patterns of fertilization track pollen deposition, pollinator–plant interactions may help explain the persistence and spread of tetraploids in mixed-ploidy populations.  相似文献   

16.
Distyly has been interpreted as a mechanism that promotes cross-pollination among conspecific plants and as one of the routes leading to the evolution of dioecy. In one of the possible evolutionary pathways, pollinators may disrupt intermorph pollen flow, and, as a consequence, floral morphs may gradually specialize as either male or female (functional dioecy). Natural patterns of pollen deposition and fruit and seed production were estimated in Palicourea demissa (Rubiaceae) and used as parameters to assess functional gender differences between floral morphs. Pollen flow was asymmetrical in P. demissa. Long-styled flowers were more effective than short-styled flowers in pollen deposition towards compatible stigmas, whereas short-styled flowers were more effective in legitimate pollen receipt. Accordingly, short-styled plants produced more fruits and viable seeds than long-styled plants. The contributions of male and female function to the potential functional gender were equivalent in both morphs. However, the realized functional gender deviated significantly from the potential functional gender in both morphs, in which short-styled plants were more successful through their female function, but long-styled plants through their male function. If pollinators disrupt the complementarities of pollen transfer between the two morphs (asymmetric pollen flow), the expression of a more profitable gender is expected in each morph. Thus, our results support the hypothesis that dioecy may evolve in distylous populations through the gradual specialization of each morph as either male or female.  相似文献   

17.
Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.  相似文献   

18.
Bdallophytum oxylepis is a rare and endemic species belonging to the Cytinaceae family, a root holoparasitic plant in which most resources are allocated to attracting pollinators. This species is gynomonoecious with intraindividual variation in flower size and sex. Moreover, the flowers exhibit sapromyophilous traits, as do other species of Bdallophytum. Firstly, this study aimed to determine whether all floral morphs can form seeds and be pollen donors (in the case of bisexual flowers). Secondly, as this species has floral traits hypothesized to adapt to particular types of pollen vectors (carrion flies), we also studied the pollination of B. oxylepis to confirm whether the syndromes correspond to what occurs in nature. Through pollination treatments, we determined that all floral morphs are functional. By monitoring the inflorescences, we found that pollination is specialized in the studied population. Stingless bees performed pollination, as they have a high visitation rate, frequency, and constancy, and they are unique visitors that deposit pollen on the stigmas. Thus, they appear to be effective pollinators rather than carrion flies, as predicted by the syndrome. As shown here, animal–plant interaction studies can help establish a basis for conserving rare species such as holoparasites. Moreover, knowledge about the reproductive aspects of B. oxylepis reveals essential clues about its life cycle and role in maintaining native pollinators with economic and cultural value, such as stingless bees.  相似文献   

19.
Heterostyly functions as an outcrossing mechanism facilitating accurate pollen transfer from anthers to stigmas of particular heights as a result of the behavior of specialist pollinators. However, heterostylous plants are also visited by generalist pollinators, which may affect the plant–pollinator mutualism. Eichhornia crassipes is a tristylous invasive species, with only the mid- and long-styled morphs (M and L) found in China. We recorded flower-visiting insects in Zhuhai, Zhongshan and Nanning in South China. We hand-pollinated the two morphs to determine their compatibility. In addition, by allowing controlled insect pollination in artificial isoplethically monomorphic and bimorphic populations, we undertook a detailed analysis of pollen deposition between the floral morphs, and fruit and seed set. Ranked by relative abundance, the flower-visiting insects were: Apis mellifera, A. cerana, Lasioglossum sp. and Eristalis arvorum. Hand pollination showed that both the M and L morphs were self-compatible, but the former was probably more so than the latter. Intra-morph pollen transfer by A. mellifera within a population was significantly greater than legitimate pollen transfer between populations, suggesting that the pollen exchange between populations was limited. Seed set of the L morph was significantly greater than that of the M morph in monomorphic populations, indicating intra-morph pollen deposition in the former was higher than in the latter. The results showed that A. mellifera was the major pollinator in South China and able to pollinate E. crassipes legitimately and to promote its fruit and seed set, even though high levels of intra-morph pollination occurred.  相似文献   

20.
Benjamin R. Montgomery 《Oikos》2009,118(7):1084-1092
Pollinator constancy and pollen carryover are both thought to mitigate competitive effects that result when shared pollinators cause loss of pollen to heterospecific flowers. I present analytical and simulation models to investigate how pollinator constancy and pollen carryover interact with each other and with the relationship between pollen receipt and seed set to determine pollination success in competitive environments. With inconstant pollinators, increased pollen carryover reduces variance in pollen receipt without affecting average pollen receipt. Consequently, for flowers requiring at least a threshold quantity of pollen for success, rare flowers with inconstant pollinators benefit from reduced carryover, especially for high pollen receipt thresholds, whereas common flowers benefit from increased carryover, especially for low receipt thresholds. Pollinator constancy is predicted to increase pollen receipt, especially if pollen carryover rates are low. As a result, increased pollinator constancy reduces the range of pollen receipt thresholds for which carryover is beneficial. Similarly, for flowers whose pollination success is a convex function of pollen receipt, carryover is expected to increase fecundity if pollinators are inconstant, but with even a low degree of pollinator constancy, carryover reduces fecundity. These results predict that rare plants with many ovules per flower benefit from dispersing aggregations of pollen, especially if their pollinators exhibit constancy, whereas plants with inconstant pollinators and low thresholds of pollen receipt benefit from pollen grains dispersing individually to increase the number of flowers reached by the pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号