首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hoenke S  Wild MR  Dimroth P 《Biochemistry》2000,39(43):13223-13232
Malonate decarboxylase from Klebsiella pneumoniae consists of four subunits MdcA, D, E, and C and catalyzes the cleavage of malonate to acetate and CO(2). The smallest subunit MdcC is an acyl carrier protein to which acetyl and malonyl thioester residues are bound via a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and turn over during the catalytic mechanism. We report here on the biosynthesis of holo acyl carrier protein from the unmodified apoprotein. The prosthetic group biosynthesis starts with the MdcB-catalyzed condensation of dephospho-CoA with ATP to 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA. In this reaction, a new alpha (1' ' --> 2') glycosidic bond between the two ribosyl moieties is formed, and thereby, the adenine moiety of ATP is displaced. MdcB therefore is an ATP:dephospho-CoA 5'-triphosphoribosyl transferase. The second protein involved in holo ACP synthesis is MdcG. This enzyme forms a strong complex with the 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA prosthetic group precursor. This complex, called MdcG(i), is readily separated from free MdcG by native polyacrylamide gel electrophoresis. Upon incubation of MdcG(i) with apo acyl carrier protein, holo acyl carrier protein is synthesized by forming the phosphodiester bond between the 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and serine 25 of the protein. MdcG corresponds to a 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA:apo ACP 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA transferase. In absence of the prosthetic group precursor, MdcG catalyzes at a low rate the adenylylation of apo acyl carrier protein using ATP as substrate. The adenylyl ACP thus formed is an unphysiological side product and is not involved in the biosynthesis of holo ACP. The 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA precursor of the prosthetic group has been purified and its identity confirmed by mass spectrometry and enzymatic analysis.  相似文献   

2.
The biosynthesis of the 2'-(5"-phosphoribosyl)-3'-dephospho-coenzyme A (CoA) prosthetic group of citrate lyase (EC 4.1.3.6), a key enzyme of citrate fermentation, proceeds via the initial formation of the precursor 2'-(5"-triphosphoribosyl)-3'-dephospho-CoA and subsequent transfer to apo-citrate lyase with removal of pyrophosphate. In Escherichia coli, the two steps are catalyzed by CitG and CitX, respectively, and the corresponding genes are part of the citrate lyase gene cluster, citCDEFXG. In the homologous citCDEFG operon of Klebsiella pneumoniae, citX is missing. A search for K. pneumoniae citX led to the identification of a second genome region involved in citrate fermentation which comprised the citWX genes and the divergent citYZ genes. The citX gene was confirmed to encode holo-citrate lyase synthase, whereas citW was shown to encode a citrate carrier, the third one identified in this species. The citYZ genes were found to encode a two-component system consisting of the sensor kinase CitY and the response regulator CitZ. Remarkably, both proteins showed >or=40% sequence identity to the citrate-sensing CitA-CitB two-component system, which is essential for the induction of the citrate fermentation genes in K. pneumoniae. A citZ insertion mutant was able to grow anaerobically with citrate, indicating that CitZ is not essential for expression of citrate fermentation genes. CitX synthesis was induced to a basal level under anaerobic conditions, independent of citrate, CitB, and CitZ, and to maximal levels during anaerobic growth with citrate as the sole carbon source. Similar to the other citrate fermentation enzymes, CitX synthesis was apparently subject to catabolite repression.  相似文献   

3.
Hoenke S  Schmid M  Dimroth P 《Biochemistry》2000,39(43):13233-13240
Malonate decarboxylase from Klebsiella pneumoniae contains an acyl carrier protein (MdcC) to which a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group is attached via phosphodiester linkage to serine 25. We have shown in the preceding paper in this issue that the formation of this phosphodiester bond is catalyzed by a phosphoribosyl-dephospho-coenzyme A transferase MdcG with the substrate 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA that is synthesized from ATP and dephospho-coenzyme A by the triphosphoribosyl transferase MdcB. The reaction catalyzed by MdcG is related to nucleotidyltransfer reactions, and the enzyme indeed catalyzes unphysiological nucleotidyltransfer, e.g., adenylyltransfer from ATP to apo acyl carrier protein (ACP). These unspecific side reactions are favored at high Mg(2+) concentrations. A sequence motif including D134 and D136 of MdcG is a signature of all nucleotidyltransferases. It is known from the well-characterized mammalian DNA polymerase beta that this motif is at the active site of the enzyme. Site-directed mutagenesis of D134 and/or D136 of MdcG to alanine abolished the transfer of the prosthetic group to apo ACP, but the binding of triphosphoribosyl-dephospho-CoA to MdcG was not affected. Evidence is presented that similar to MdcG, MadK encoded by the malonate decarboxylase operon of Malonomonas rubra and CitX from the operon encoding citrate lyase in Escherichia coli are phosphoribosyl-dephospho-CoA transferases catalyzing the attachment of the phosphoribosyl-dephospho-CoA prosthetic group to their specific apo ACPs.  相似文献   

4.
Neonatal rat brains were examined for changes in levels of ATP, ADP, AMP, cyclic AMP, GTP, GDP, UTP, UDP, UMP, and CTP during exposure to 100% nitrogen for 20 min and subsequent recovery in air. During hypoxia, ATP, GTP, UTP, and CTP levels and the GTP/GDP ratio decreased to 38, 50, 26, 21, and 21%, respectively, of control levels. No significant change in cyclic AMP level was observed. The decrease in the total uridine nucleotide pool during hypoxia was markedly greater (to 53% of control levels) than that in the total adenine nucleotide pool (to 92% of control levels). During recovery, ATP and GTP levels were rapidly and almost completely restored. On the other hand, CTP levels returned slowly to control values after a 2-h recovery period. Restoration of the UTP level was slow and incomplete (87% of the control value even after a 3-h recovery period). The GTP/GDP ratio also did not return to normal. These data suggest that hypoxic insult to the neonate may have an effect on the synthesis of nucleotidyl sugars, phospholipids, and proteins in the brain, resulting in significant problems with developmental processes of the brain. The present study also showed that the delayed restorations of the UTP level and the GTP/GDP ratio were not seen in the brains of adult rats subjected to acute severe hypoxic insult.  相似文献   

5.
The acyl carrier protein (ACP) of the tetracenomycin C polyketide synthase, encoded by the tcmM gene, has been expressed in both Streptomyces glaucescens and Escherichia coli and purified to homogeneity. Expression of the tcmM gene in E. coli results mainly in the TcmM apo-ACP, whereas expression in S. glaucescens yields solely the holo-ACP. The purified holo-TcmM is active in a malonyl coenzyme A:ACP transacylase assay and is labeled by radioactive beta-alanine, confirming that it carries a 4'-phosphopantetheine prosthetic group.  相似文献   

6.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

7.
Cultured pituitary cells prelabeled with myo-[2-3H] inositol were permeabilized by ATP4-, exposed to guanine nucleotides and resealed by Mg2+. Addition of guanosine 5'-0-(3-thio triphosphate) (GTP gamma S) to permeabilized cells, or gonadotropin releasing hormone (GnRH) to resealed cells, resulted in enhanced phospholipase C activity as determined by [3H] inositol phosphate (Ins-P) production. The effect was not additive, but the combined effect was partially inhibited by guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) or by neomycin. Surprisingly, addition of GDP beta S (100-600 microM) on its own resulted in a dose-related increase in [3H]Ins-P accumulation. Several nucleoside triphosphates stimulated phospholipase C activity in permeabilized pituitary cells with the following order: UTP greater than GTP gamma S greater than ATP greater than CTP. The stimulatory effect of UTP, ATP and CTP, but not GTP gamma S or GDP beta S, could also be demonstrated in normal pituitary cells suggesting a receptor-activated mechanism. GTP and GTP gamma S decreased the affinity of GnRH binding to pituitary membranes and stimulated LH secretion in permeabilized cells. These results suggest the existence of at least two G-proteins (stimulatory and inhibitory) which are involved in phospholipase C activation and GnRH action in pituitary cells.  相似文献   

8.
CTP synthase catalyzes the reaction glutamine + UTP + ATP --> glutamate + CTP + ADP + Pi. The rate of the reaction is greatly enhanced by the allosteric activator GTP. We have studied the glutaminase half-reaction of CTP synthase from Lactococcus lactis and its response to the allosteric activator GTP and nucleotides that bind to the active site. In contrast to what has been found for the Escherichia coli enzyme, GTP activation of the L. lactis enzyme did not result in similar kcat values for the glutaminase activity and glutamine hydrolysis coupled to CTP synthesis. GTP activation of the glutaminase reaction never reached the levels of GTP-activated CTP synthesis, not even when the active site was saturated with UTP and the nonhydrolyzeable ATP-binding analog adenosine 5'-[gamma-thio]triphosphate. Furthermore, under conditions where the rate of glutamine hydrolysis exceeded that of CTP synthesis, GTP would stimulate CTP synthesis. These results indicate that the L. lactis enzyme differs significantly from the E. coli enzyme. For the E. coli enzyme, activation by GTP was found to stimulate glutamine hydrolysis and CTP synthesis to the same extent, suggesting that the major function of GTP binding is to activate the chemical steps of glutamine hydrolysis. An alternative mechanism for the action of GTP on L. lactis CTP synthase is suggested. Here the binding of GTP to the allosteric site promotes coordination of the phosphorylation of UTP and hydrolysis of glutamine for optimal efficiency in CTP synthesis rather than just acting to increase the rate of glutamine hydrolysis itself.  相似文献   

9.
Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues.  相似文献   

10.
During polyketide biosynthesis, malonyl groups are transferred to the acyl carrier protein (ACP) component of the polyketide synthase (PKS), and it has been shown that a number of type II polyketide ACPs undergo rapid self-acylation from malonyl-CoA in the absence of a malonyl-CoA:holo-acyl carrier protein transacylase (MCAT). More recently, however, the observation of self-malonylation has been ascribed to contamination with Escherichia coli MCAT (FabD) rather than an intrinsic property of the ACP. The wild-type apo-ACP from the actinorhodin (act) PKS of Streptomyces coelicolor (synthetic apo-ACP) has therefore been synthesized using solid-state peptide methods and refolded using the GroEL/ES chaperone system from E. coli. Correct folding of the act ACP has been confirmed by circular dichroism (CD) and 1H NMR. Synthetic apo-ACP was phosphopantetheinylated to 100% by S. coelicolor holo-acyl carrier protein synthase (ACPS), and the resultant holo-ACP underwent self-malonylation in the presence of malonyl-CoA. No malonylation of negative controls was observed, confirming that the use of ACPS and GroEL/ES did not introduce contamination with E. coli MCAT. This result proves unequivocally that self-malonylation is an inherent activity of this PKS ACP in vitro.  相似文献   

11.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

12.
The ATP content of soybean (Glycine max [L.] Merr. cv. Kent) axes incubated for 3 hours in 1 mm solutions of adenine and adenosine increased over 100% and 75%, respectively, over axes incubated in water. The increase in ATP was primarily due to the conversion of these purines to nucleotides via the nucleotide salvage pathway. The ATP formed was in a metabolically active pool because label from adenine was incorporated into acid-insoluble material. Adenine also increased the levels of GTP, UTP, and CTP, but not to the extent of the ATP level.  相似文献   

13.
Transient kinetic data of the hydrolysis of several nucleotides (TTP, CTP, UTP, GTP) by cardiac myosin subfragment 1 (S1) were analyzed to obtain values for the equilibrium constant for nucleotide binding and rate constants for the S1-nucleotide isomerization and the subsequent nucleotide hydrolysis as well as the magnitudes of the relative fluorescence enhancements of the myosin that occur upon isomerization and hydrolysis. These data are compared with data from a previous study with ATP. Nucleotide binding is found to be relatively insensitive to nucleotide ring structure, being affected most by the group at position C6. Isomerization and hydrolysis are more sensitive to nucleotide structure, being inhibited by the presence of a bulky group at position C2. Kinetic parameters decrease as follows: for binding, GTP greater than UTP approximately TTP greater than ATP greater than CTP; for isomerization, ATP greater than UTP approximately TTP approximately CTP greater than GTP; for hydrolysis, ATP greater than TTP greater than CTP approximately UTP greater than GTP. Fluorescence enhancements appear to be most dependent upon the relative values of the individual rate constants.  相似文献   

14.
The synergistic effects of potential amino donors were studied in the assay of CTP synthetase in extracts of Chinese hamster fibroblasts. We found that L-glutamine was not effective as the sole amino donor, but combinations of L-glutamine with NH4HCO3, L-arginine or potassium phosphate did result in the conversion of UTP to CTP. L-arginine or potassium phosphate were also not effective when used alone, and NH4HCO3 was only slightly effective. Our studies demonstrate that the individual synergistic combinations were not additive; multiple combinations of components decreased rather than increased the formation of CTP. The synergistic combinations of L-glutamine with either NH4HCO3 or L-arginine had an absolute requirement for ATP; when ATP and PEP were absent no conversion of UTP to CTP occurred. The presence of GTP in a reaction mixture slightly increased the formation of CTP when L-glutamine and NH4HCO3 were used and substantially increased CTP formation when L-glutamine and L-arginine were used. De novo CTP synthesis was greatly reduced when nonradioactive CTP was added to an assay mixture, suggesting feedback inhibition. A TLC procedure has been developed that allows for the direct separation of UTP and CTP without requiring prior conversion to the mononucleotide or nucleoside level.  相似文献   

15.
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex.  相似文献   

16.
Mammalian brain microtubules are sensitive to cyclic AMP in vitro   总被引:2,自引:0,他引:2  
Microtubules assembled in vitro with ATP were depolymerized by the addition of cyclic AMP, which correlates with a stimulation of the endogeneous phosphorylation reaction. When assembled with GTP, however, microtubules were only sensitive to cyclic AMP when ATP was present. This nucleoside triphosphate induced the disassembly of microtubules in a concentration-dependent, cyclic nucleotide-stimulated manner. Since UTP, CTP and the nonhydrolyzable ATP analog adenosine-5'-(beta, gamma-methylene)triphosphate were without comparable effect, it was assumed that phosphorylation of the microtubule-associated proteins may represent a physiological mechanism by which microtubules in the living cell respond to external stimuli.  相似文献   

17.
The effect of various nucleotides on the last step of aldosterone biosynthesis, the so-called "18 oxidation" (transformation of 18-hydroxycorticosterone to aldosterone), was studied by incubation of tritiated 18-hydroxycorticosterone with untreated duck adrenal mitochondria in vitro. The study was carried out in the absence or in the presence of antimycin A which blocks the respiratory chain. Results show that, when oxidative phosphorylation chain functions normally, GTP and CTP had no effect, UTP stimulated this reaction but ADP and ATP inhibited the transformation of 18-hydroxycorticosterone into aldosterone to the same extent. For this reason ATP is included in all controls for experiments studying the effect of ATP when "18 oxidation" is inhibited by antimycin A. When oxidative phosphorylation chain is inhibited by antimycin A, ATP is able to reverse the inhibition of "18 oxidation" induced by antimycin A, in the presence of succinate. Under these conditions UTP is not able to reverse the inhibition induced by antimycin A; GTP and CTP had no effect. Effects of ATP and UTP on the last step of aldosterone biosynthesis are related to different mechanisms. ATP clearly acts as an energy source for "18 oxidation" in the presence of succinate. The role of UTP must still be determined.  相似文献   

18.
Yoshida T  Kawaguchi R  Maruyama T 《FEBS letters》2002,514(2-3):269-274
The archaeal chaperonin-mediated folding of green fluorescent protein (GFP) was examined in the presence of various nucleotides. The recombinant alpha- and beta-subunit homo-oligomers and natural chaperonin oligomer from Thermococcus strain KS-1 exhibited folding activity with not only ATP but also with CTP, GTP, or UTP. The ADP-bound form of both recombinant and natural chaperonin had the ability to capture non-native GFP, but could not refold it in the presence of CTP, GTP or UTP until ATP was supplied. The archaeal chaperonin thus utilized ATP, but could not use other nucleoside triphosphates in the cytoplasm where ADP was present.  相似文献   

19.
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.  相似文献   

20.
Eukaryotic initiation factor 2 (eIF-2) is shown to bind ATP with high affinity. Binding of ATP to eIF-2 induces loss of the ability to form a ternary complex with Met-tRNAf and GTP, while still allowing, and even stimulating, the binding of mRNA. Ternary complex formation between eIF-2, GTP, and Met-tRNAf is inhibited effectively by ATP, but not by CTP or UTP. Hydrolysis of ATP is not required for inhibition, for adenyl-5'-yl imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP, is as active an inhibitor; adenosine 5'-O-(thiotriphosphate) (ATP gamma S) inhibits far more weakly. Ternary complex formation is inhibited effectively by ATP, dATP, or ADP, but not by AMP and adenosine. Hence, the gamma-phosphate of ATP and its 3'-OH group are not required for inhibition, but the beta-phosphate is indispensible. Specific complex formation between ATP and eIF-2 is shown 1) by effective retention of Met-tRNAf- and mRNA-binding activities on ATP-agarose and by the ability of free ATP, but not GTP, CTP, or UTP, to effect elution of eIF-2 from this substrate; 2) by eIF-2-dependent retention of [alpha-32P]ATP or dATP on nitrocellulose filters and its inhibition by excess ATP, but not by GTP, CTP, or UTP. Upon elution from ATP-agarose by high salt concentrations, eIF-2 recovers its ability to form a ternary complex with Met-tRNAf and GTP. ATP-induced inhibition of ternary complex formation is relieved by excess Met-tRNAf, but not by excess GTP or guanyl-5'-yl imidodiphosphate (GMP-PNP). Thus, ATP does not act by inhibiting binding of GTP to eIF-2. Instead, ATP causes Met-tRNAf in ternary complex to dissociate from eIF-2. Conversely, affinity of eIF-2 for ATP is high in the absence of GTP and Met-tRNAf (Kd less than or equal to 10(-12) M), but decreases greatly in conditions of ternary complex formation. These results support the concept that eIF-2 assumes distinct conformations for ternary complex formation and for binding of mRNA, and that these are affected differently by ATP. Interaction of ATP with an eIF-2 molecule in ternary complex with Met-tRNAf and GTP promotes displacement of Met-tRNAf from eIF-2, inducing a state favorable for binding of mRNA. ATP may thus regulate the dual binding activities of eIF-2 during initiation of translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号