首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red-light irradiation of etiolated wheat (Triticum aestivum L.) leaf protoplasts rapidly increases calcium-dependent phosphorylation in vivo of 70- and 60-kD peptides, and the phosphorylation is attenuated by simultaneous far-red light (K.M. Fallon, P.S. Shacklock, A.J. Trewavas [1993] Plant Physiology 101:1039-1045). When these protoplasts were solubilized in sodium dodecyl sulfate and protein kinase was renatured in situ after gel electrophoresis, a single 60-kD protein kinase was detected. In situ phosphorylation was inhibited by prior exposure of etiolated protoplasts to 30 to 60 s of white, 1 to 2 min of blue, or 2 to 5 min of red light. The effect of red light was attenuated by concomitant far-red light. The inhibition of in situ phosphorylation by light was lost after a further prolonged incubation of protoplasts in darkness. In situ phosphorylation was calcium dependent, and the electrophoretic mobility of the protein kinase was increased in the presence of calcium ions. Although treatment of protoplasts with ionophores and channel blockers produced data consistent with in vivo regulation of phosphorylation by cytosol calcium, additional light-activated transduction pathways have to be invoked to explain all the observations.  相似文献   

2.
In the rat parotid gland, substance P has been shown to induce a phosphatidylinositol bisphosphate breakdown resulting in an inositol trisphosphate production. These data suggested that substance P activated a phospholipase C and thus mediated its effects through the calcium-phospholipid pathway. To determine which neurokinin (NK) receptor was involved in the substance P response, we have used selective agonists of the different NK receptors and examined their effects on both inositol trisphosphate production and calcium movements. A selective NK-1 receptor agonist, [Sar9Met(O2)11]-substance P, evoked an [3H]inositol trisphosphate production and a rapid and transient 45Ca2+ efflux. On the other hand, selective NK-2 and NK-3 receptor agonists, [beta-Ala8]-NKA(4-10) and [MePhe7]-NKB, respectively, were without effect. We conclude that, in the rat parotid glands, only the NK-1 receptors are coupled to the calcium-phospholipid pathway. The C-terminal part of substance P appeared to be sufficient to stimulate this route because the C-terminal octapeptide, substance P(4-11), mimicked substance P effects on both inositol trisphosphate production and calcium movements. The NK-2 and NK-3 receptors, if present in the rat parotid glands, are not associated with the calcium-phospholipid pathway.  相似文献   

3.
We compared the effects of HGF and EGF on cytoplasmic free calcium concentration, [Ca2+]c, and inositol trisphosphate production in rat hepatocytes. HGF induced a prompt and transient elevation of [Ca2+]c. EGF also induced an immediate increase in [Ca2+]c, the magnitude of which was greater than that by HGF. In contrast, in the presence of 1 microM extracellular calcium EGF increased [Ca2+]c to a lesser extent than HGF. When cells were pretreated with EGF, the effect of HGF on [Ca2+]c was greatly enhanced. However, such enhancement was not observed in medium containing 1 microM extracellular calcium. In hepatocytes prelabeled with [3H]-inositol, both HGF and EGF increased [3H]inositol trisphosphate. HGF and EGF acted synergistically to stimulate production of inositol trisphosphate. These results indicate that both HGF and EGF increase [Ca2+]c by a mechanism involving phosphoinositide turnover and that the actions of HGF and EGF on hepatocyte calcium metabolism are not totally identical.  相似文献   

4.
H M Huang  G E Gibson 《Life sciences》1989,45(16):1443-1449
The effects of potassium and in vitro histotoxic hypoxia (i.e. KCN) on phosphatidylinositol turnover in rat cortical synaptosomes were determined. [2-3H] Inositol prelabelled rat synaptosomes were prepared from cerebral cortex slices that had been incubated with [2-3H] inositol. Depolarization with 60 mM KCl increased [2-3H] inositol phosphates in a time dependent manner. Depolarization with 60 mM KCl increased [2-3H] inositol trisphosphate transiently at 5 s. K+ induced rapid formation of [2-3H]-inositol bisphosphate and maintained an elevated level for at least 5 min. K+ stimulated gradual formation of [2-3H] inositol monophosphate with time. One minute of hypoxia enhanced potassium-stimulated [2-3H] inositol bisphosphate formation. However, 30 min of hypoxia impaired potassium-stimulated accumulation of [2-3H] inositol phosphates. The effects of histotoxic hypoxia were all dependent upon calcium in the medium and on K+-depolarization. Thus, hypoxia altered the K+-induced accumulation of inositol phosphates in prelabelled synaptosomes in a time dependent, biphasic manner that was calcium dependent.  相似文献   

5.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

6.
A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metabolism of these two isomers of inositol trisphosphate in carbachol-stimulated rat parotid glands. Fragments of glands were pre-labelled with myo-[2-3H]inositol, washed, and then stimulated with carbachol. At 5s after stimulation a clear increase in inositol 1,4,5-trisphosphate was detected, with no significant increase in inositol 1,3,4-trisphosphate. After this initial lag however, inositol 1,3,4-phosphate rose rapidly; by 15s it predominated over inositol 1,4,5-trisphosphate, and continued to rise so that after 15 min it was at 10-20 times the radiolabelling level of the 1,4,5-isomer. In contrast, after the initial rapid rise (maximal within 15s), inositol 1,4,5-trisphosphate levels declined to near control levels after 1 min and then rose again very gradually over the next 15 min. When a muscarinic blocker (atropine) was added after 15 min of carbachol stimulation, inositol 1,4,5-trisphosphate levels dropped to control levels within 2-3 min, whereas inositol 1,3,4-trisphosphate levels took at least 15 min to fall, consistent with the kinetics observed earlier for total parotid inositol trisphosphates [Downes & Wusteman (1983) Biochem. J. 216, 633-640]. Phosphatidylinositol bisphosphate (PtdInsP2) from stimulated and control cells were degraded chemically to inositol trisphosphate to seek evidence for 3H-labelled PtdIns(3,4)P2. No evidence could be obtained that a significant proportion of PtdInsP2 was this isomer; in control tissues it must be less than 5% of the total PtdInsP2 radiolabelled by myo-[2-3H]inositol. These data indicate that, provided that inositol 1,4,5-trisphosphate is studied independently of inositol 1,3,4-trisphosphate, the former shows metabolic characteristics consistent with its proposed role as a second messenger for calcium mobilization. The metabolic profile of inositol 1,3,4-trisphosphate is entirely different, and its function and source remain unclear.  相似文献   

7.
Bovine aortic and cerebral microvascular endothelial cells and cultured segments of canine common carotid artery possess functional receptors for the nonapeptide bradykinin which mediate a rapid increase in the formation of [3H]inositol 1-phosphate, [3H]inositol 1,4-bisphosphate, and [3H]inositol 1,4,5-trisphosphate from cell membranes containing isotopically labeled myo-inositol. Bradykinin stimulated the formation of [3H]inositol phosphates from cells in culture or tissues at threshold concentrations of 0.1 nM and 1 nM, and with a half-maximal effective concentration of 0.6-1.0 nM and 30 nM, respectively. In cultured cells, the formation of [3H]inositol trisphosphate and [3H]inositol bisphosphate preceded the formation of [3H]inositol monophosphate. Similarly, [3H]inositol phosphate formation was not inhibited by addition of calcium channel blockers, a calcium chelator, or an intracellular calcium antagonist. Calcium ionophore A23187 did not promote [3H]inositol phosphate accumulation. The receptor selectivity of the bradykinin response in cultured cells was most compatible with a type-2 mediated response. Kallidin stimulated with the same potency as bradykinin but was more potent than methionyl-lysyl-bradykinin or des-Arg9-bradykinin. The B1 receptor antagonists des-Arg9-[Leu8]-bradykinin and des-Arg10-[Leu9]-kallidin were without effect. The rapidity of the inositol phosphate response as well as the close correspondence between the bradykinin type-2 receptor mediated hydrolysis of polyphosphoinositides and changes in prostacyclin synthesis, vessel dilation, and permeability suggests that breakdown products of inositol lipids serve as second messengers mediating the effects of bradykinin on the vascular endothelium.  相似文献   

8.
U. Russ  F. Grolig  G. Wagner 《Planta》1991,184(1):105-112
The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.Abbreviations EGTA ethylene glycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - indo-1 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,Ntetraacetic acid - pCa log [Ca2+] - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - xG geometric mean Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthdayThis paper is part of the Ph.D. thesis of U. Russ at the Justus-Liebig-Universitat Giessen (FRG). Part of this work has been presented at a meeting on Calcium and intracellular signalling in plants in Plymouth, UK, Dec. 1990We are indebted to Dr. G. Seibold and Dipl. Phys. H. Weintraut for their advice on the technique of microspectrofluorometry and for allowing access to the microspectrophotometric facilities in the Strahlenzentrum der Justus-Liebig-Universität, Giessen, FRG. We thank Mrs. A. Quanz for reliable culture of the algae and evaluation of the videotapes. Bay-K8644 was a generous gift of Bayer AG, Wuppertal, FRG. U. russ was supported by a scholarship according to the Hessisches Graduierten Förderungsgesetz. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

9.
Several T-cell functions are controlled by the regulatory peptide interleukin 2 (IL-2). Binding of IL-2 with specific receptors has been well documented, but the molecular mechanism by which IL-2/IL-2 receptor interaction is transduced is not known. We have found that treatment of IL-2-dependent T-cell lines with IL-2 is followed by a rapid stimulation of inositol phospholipid metabolism, as determined by isotopic methodology employing myo-[1,2-3H]inositol. Increased incorporation of the metabolic precursor into phosphatidylinositol and phosphatidylinositol 4-monophosphate, together with the appearance of radiolabeled phosphatidylinositol 4,5-bisphosphate, occurred within minutes of treatment with IL-2 of factor-dependent CT6 cells. Analysis of labeled water-soluble compounds from prelabeled cells indicated a rapid (within 1 min) stimulation of inositol phospholipid hydrolysis following IL-2 treatment. Increased recovery of [3H] inositol phosphates and appearance of [3H]inositol trisphosphate were observed after treatment with IL-2 of CT6 cells, as well as of a second IL-2-dependent cell line, CTB6. These findings suggests that inositol phospholipid-derived metabolites (i.e. diacylglycerol and inositol trisphosphate) may be part of the mechanism by which certain IL-2 signals are transduced.  相似文献   

10.
1. Maitotoxin (MTX) was an extraordinarily potent stimulant of phosphoinositide breakdown in the neuroblastoma hybrid NCB-20 cells. 2. Maximal responses were obtained at 0.25-0.5 ng MTX/ml, and resulted in increased formation of [3H]inositol mono-, bis-, and trisphosphates. Increased formation of [3H]inositol bis- and trisphosphate was observed as early as 15 sec after the addition of MTX. 3. MTX-induced phosphoinositide breakdown in NCB-20 cells was not antagonized by organic (nifedipine, methoxyverapamil) or inorganic (Mn2+, Co2+, Cd2+) calcium channel blockers. However, the response on phosphoinositide breakdown was completely eliminated in the absence of extracellular calcium. 4. The results suggest that MTX either directly stimulates phosphoinositide breakdown in a calcium-dependent manner or acts indirectly through calcium channels insensitive to organic/inorganic calcium channel blockers.  相似文献   

11.
The accumulation of inositol phosphates in myo-[3H]inositol-labelled human neutrophils stimulated with the chemotactic peptide fMet-Leu-Phe was measured. The challenge with the chemotactic peptide caused the generation of inositol monophosphate (InsP), inositol bisphosphate (InsP2) and inositol trisphosphate (InsP3). The formation of the three inositol phosphates followed a differential time course: InsP3 accumulated very rapidly and transiently, whereas InsP increased steadily for more than 2 min. Inositol phosphate formation was only partially decreased by procedures which prevented the fMet-Leu-Phe-dependent increase of cytosolic free Ca2+ concentration.  相似文献   

12.
In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic - acid AP4 dl-2-amino-4-phosphonobutyric acid - BPB bromphenacyl bromide - BSA bovine serum albumin - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - DFMO -difluoromethylornithine - DIDS diisothiocyanotostilbene-2,2-disulfonic acid - EGTA ethyleneglycol-bis-N - N, N N-tetraacetic acid - GABA -aminobutyric acid - GDEE glutamate diethyl ether - -GG -glutamylglycine - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - NDGA nordihydroguaiaretic acid - NE norepinephrine - NMDA N-methyl-d-aspartate  相似文献   

13.
Binding sites for inositol trisphosphate in the bovine adrenal cortex   总被引:11,自引:0,他引:11  
Binding sites for inositol trisphosphate (IP3) have been identified in bovine adrenal cortex, employing [32P]IP3 prepared from human erythrocytes radiolabeled with [32P]ATP. IP3 was bound to adrenal microsomes with high affinity (Kd = 5 nM) and low capacity (186 fmol/mg protein). During kinetic studies, half-maximal binding was reached in less than one min at 4 degrees C, and dissociation was even more rapid with t1/2 of about 10 sec. [32P]IP2 showed no binding to the microsomal sites, which represent putative receptors at which IP3 acts to elevate intracellular calcium concentration during the actions of peptide hormones such as angiotensin II.  相似文献   

14.
Synaptosomes have been isolated from rat cerebral cortex and labelled in vitro with [32P]orthophosphate and myo-[2-3H]inositol. Subsequent addition of the Ca2+ ionophore A23187 in the presence of 2 mM extrasynaptosomal Ca2+ raised intrasynaptosomal free [Ca2+] to greater than 2 microM from a resting level of 200 nM and led to rapid breakdown of polyphosphoinositides. This was accompanied by a small increase in the level of inositol monophosphate, greatly enhanced accumulation in inositol bisphosphate, but no detectable increase in inositol trisphosphate. Depolarising (25 mM) extrasynaptosomal K+ produced a smaller increase in intrasynaptosomal free [Ca2+] (to around 400 nM) and a proportional increase in inositol bisphosphate radioactivity. Carbachol (1 mM) alone elicited only limited polyphosphoinositide breakdown and inositol mono- and bisphosphate formation, but this was greatly increased in the presence of 25 mM K+. The effect of carbachol in the presence of depolarising K+ was time- and dose-dependent and was antagonised by atropine (10 microM). There was no detectable accumulation of inositol trisphosphate in the presence of carbachol, K+, or carbachol plus K+, even after short (30 s.) incubations. The lack of inositol trisphosphate accumulation does not appear to result from rapid formation of inositol tetrakisphosphate or from enhanced breakdown of the trisphosphate in synaptosomes.  相似文献   

15.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

16.
This essay attempts to summarize some of the best evidence for the role of inositol trisphosphate as a second messenger in signal transduction processes. The following aspects are addressed in the essay: (a) The synthesis of inositol trisphosphate and other inositol lipids, (b) Receptor-phosphatidylinositol bisphosphate phospholipase C coupling and the N-ras protooncogene, (c) Inositol trisphosphate and intracellular calcium, (d) Cell growth and oncogenes, (e) Receptors linked to the phosphatidylinositol cycle, (f) Phototransduction and (g) Interactions between inositol trisphosphate and other second messengers.Abbreviations Cyclic AMP Adenosine 3,5-cyclic monophosphate - Cyclic GMP Guanosine 3,5-cyclic monophosphate - DG sn, 1,2-Diacylglycerol - EGF Epidermal growth factor - GDP Guanosine diphosphate - GTP Guanosine triphosphate - IP Inositol 1-monophosphate - IP2 Inositol 1,4-diphosphate - IP3 Inositol 1,4,5-trisphosphate - PA Phosphatidic acid - PDGF Platelet-derived growth factor - PI Phosphatidylinositol - PIP Phosphatidylinositol 4-monophosphate - PIP2 Phosphatidylinositol 4,5-bisphosphate - PIP3 Phosphatidylinositol 3,4,5-trisphosphate - PLC Phospholipase C  相似文献   

17.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

18.
Studies were undertaken to further elucidate the mechanism(s) by which bradykinin-dependent phosphoinositide metabolism takes place in neuroblastoma X glioma hybrid NG108-15 cells [(1984) J. Biol. Chem. 259, 10201-10207] using [3H]inositol-labelled cells. Bradykinin produced net increases in the level of [3H]inositol phosphates, especially of [3H]inositol trisphosphate which is formed transiently and most rapidly. The results indicate that bradykinin activates a phosphodiesterase to break down phosphatidylinositol 4,5-bisphosphate, generating two recently recognized intracellular messengers, 1,2-diacylglycerol and inositol trisphosphate.  相似文献   

19.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with a growth factor mixture (consisting of epidermal growth factor (EGF), insulin, bradykinin, and vasopressin) rapidly induces an increase in Na influx via a Ca-mediated activation of an amiloride-sensitive Na/H exchanger. Inositol phosphates (specifically inositol-1',4',5'-phosphate) have been implicated in mediating the mobilization of intracellular Ca stores in other cell types and we have now completed a detailed analysis of the mitogen-induced release of inositol phosphates in HSWP cells. Stimulation of inositol trisphosphate release is rapid (within 5 s) and reaches a maximum level (416-485% basal) within 10-15 s after the addition of growth factor mixture. Inositol bisphosphate and inositol monophosphate reach maximum levels by 30 s (1257% basal) and 60 s (291% basal), respectively. Levels of all three compounds then decay toward basal levels but remain elevated (150-350% of basal levels) after 10 min of incubation with mitogens. The effects of different combinations of these growth factors and of the bee venom peptide, melittin, have also been determined. We have also found that 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate, which prevents the mitogen-induced rise in intracellular calcium activity and activation of Na influx, does not alter the mitogen-stimulated accumulation of inositol trisphosphate. In addition, the calcium ionophore A23187, which increases cytosolic Ca activity and induces a Na influx, does not stimulate the release of inositol trisphosphate. Assays performed in the presence of lithium, which inhibits inositol phosphate monophosphatase, promotes the prolonged and enhanced accumulation of inositol monophosphate. Treatment with the phospholipase inhibitor mepacrine or pretreatment with dexamethasone reduces the amount of inositol phosphates released upon mitogenic stimulation. Hence mitogenic stimulation of HSWP cells leads to the rapid stimulation of inositol phosphate release via a calcium-independent mechanism and suggests inositol trisphosphate as a candidate to mediate the release of intracellular calcium stores which is involved in the processes responsible for the activation of the Na/H exchanger.  相似文献   

20.
In this study, we examined the effects of streptokinase on arachidonic acid release and prostacyclin biosynthesis in cultured bovine pulmonary artery endothelial cells. When intact cells were incubated with streptokinase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident without any cellular damage at all concentrations used (1-10,000 units/ml). Streptokinase also caused a marked release of arachidonic acid. It induced rapid phospholipid hydrolysis, resulting in the release of up to 15% of incorporated [3H]arachidonic acid into the medium. After the addition of streptokinase, degradation of phosphatidylcholine and phosphatidylethanolamine was observed and lysophosphatidylcholine and lysophosphatidylethanolamine were produced. We also observed a transient rise in diacylglycerol after the addition of streptokinase. To test for phospholipase C activity, the release of incorporated [3H]choline, [3H]inositol and [3H]ethanolamine into the culture medium was determined. The level of radioactive inositol showed an increase, but the changes in choline and ethanolamine were comparatively small. An increase in inositol was detectable within 1 min after streptokinase addition and peaked after 15 min. Inositol phosphate and inositol trisphosphate were released, and these releases were suppressed by the addition of neomycin (50 microM). These results suggest that streptokinase stimulates phospholipase A2 and C activity, and that prostacyclin biosynthesis is subsequently increased in cultured endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号