首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus laevis eggs pricked or microinjected with water or saline in medium containing a limited quantity of free Ca (1.0 to 2.0 microM) remain unactivated for at least 6 hr, even after transfer to oocyte medium containing Ca at higher concentrations (0.5-1.0 mM). These injected eggs, when later pricked in oocyte medium or exposed to A23187 or urethane are fully capable of activation. This confirms the observations of Wangh ('89). However, eggs injected in this Ca-limited medium (CaLM) with 6-DMAP as well as those simply exposed to this drug undergo changes characteristic of activation, including cortical contraction, cortical granule breakdown, a loss of MPF and CSF activities, and pronuclear formation. The time required for 6-DMAP to induce egg activation is inversely correlated to its concentration. Interestingly, eggs that have been injected with EGTA, and thus are unable to respond to activation stimuli such as pricking and A23187 or urethane treatment, can also be activated by exposure to 6-DMAP. In contrast, eggs exposed to or injected with a 6-DMAP analogue (6-aminopurine or puromycin) or a protein synthesis inhibitor (cycloheximide or emetine or puromycin) are not activated. As well, eggs injected in CaLM with 6-DMAP simultaneously with a phosphatase inhibitor (NaF or ammonium molybdate) fail to become activated. Although 6-DMAP-activated eggs remain at the pronucleus stage so long as 6-DMAP is present, they resume cell cycle activities after the drug is withdrawn. They form cleavage furrows, disassemble pronuclear envelopes, and recondense chromosomes. Also, MPF activity reappears and cycles at least twice, peaking each time shortly before cleavage furrow formation. These results suggest that activation of Xenopus eggs arrested at metaphase II by inhibition of protein phosphorylation does not require intracellular Ca release and that maintenance of the egg at metaphase II depends upon continuous protein phosphorylation.  相似文献   

2.
In Xenopus eggs, metaphase II arrest is due to the cytostatic factor that maintains a high level of MPF activity. Kinases are important in this phenomenon since p39mos and MAPK play a part in the cytostatic activity whereas p34cdc2 is the catalytic subunit of MPF. Fertilization induces a rise in intracellular calcium leading to egg activation that can be mimicked by calcium-increasing agents such as calcium ionophore. We have performed on Xenopus eggs a biochemical comparison of the effects of the kinase inhibitor 6-DMAP and the calcium ionophore. Both drugs were able to induce pronucleus formation but the underlying molecular events were different. The inactivation of MAPK occurred earlier in eggs exposed to 6-DMAP. Cyclins B1 and B2 were stable and p39mos was proteolysed in 6-DMAP-treated eggs while the three proteins underwent degradation in A23187-treated ones. These results suggest a differential regulation of ubiquitin-dependent proteolysis of cyclin B and p39mos.  相似文献   

3.
The signaling mechanism by which JNK affects mitochondria is critical to initiate apoptosis. Here we show that the absence of JNK provides a partial resistance to the toxic effect of the heavy metal cadmium. Both wild type and jnk−/− fibroblasts undergoing death exhibit cytosolic cytochrome c but, unlike wild type cells, the JNK-deficient fibroblasts do not display increased caspase activity and DNA fragmentation. The absence of apoptotic death correlates with a specific defect in activation of Bax. We conclude that JNK-dependent regulation of Bax is essential to mediate the apoptotic release of cytochrome c regardless of Bid and Bim activation.  相似文献   

4.
One critical step of the apoptotic process is the opening of the mitochondrial permeability transition (PT) pore leading to the disruption of mitochondrial membrane integrity and to the dissipation of the inner transmembrane proton gradient (ΔΨm). The mitochondrial PT pore is a polyprotein structure which is inhibited by the apoptosis-inhibitory oncoprotein Bcl-2 and which is closely associated with the mitochondrial benzodiazepine receptor (mBzR). Here we show that PK11195, a prototypic ligand of the 18-kDa mBzR, facilitates the induction of ΔΨmdisruption and subsequent apoptosis by a number of different agents,including agonists of the glucocorticoid receptor,chemotherapeutic agents (etoposide, doxorubicin),gamma irradiation, and the proapoptotic second messenger ceramide. Whereas PK11195 itself has no cytotoxic effect, it enhances apoptosis induction by these agents. This effect is not observed for benzodiazepine diazepam, whose binding site in the mBzR differs from PK11195. PK11195 partially reverses Bcl-2 mediated inhibition of apoptosis in two different cell lines. Thus, transfection-enforced Bcl-2 overexpression confers protection against glucocorticoids and chemotherapeutic agents, and this protection is largely reversed by the addition of PK11195. This effect is observed at the level of ΔΨmdissipation as well as at the level of nuclear apoptosis. To gain insights into the site of action of PK11195, we performed experiments on isolated organelles. PK11195 reverses the Bcl-2-mediated mitochondrial retention of apoptogenic factors which cause isolated nuclei to undergo apoptosis in a cell-free system. Mitochondria from control cells, but not mitochondria from Bcl-2-overexpressing cells, readily release such apoptogenic factors in response to atractyloside, a ligand of the adenine nucleotide translocator. However, control and Bcl-2-overexpressing mitochondria respond equally well to a combination of atractyloside and PK11195. Altogether, these findings indicate that PK11195 abolishes apoptosis inhibition by Bcl-2 via a direct effect on mitochondria. Moreover, they suggest a novel strategy for enhancing the susceptibility of cells to apoptosis induction and, concomitantly, for reversing Bcl-2-mediated cytoprotection.  相似文献   

5.
Exit from M phase, which requires cyclin degradation, is prevented from occurring in unfertilized eggs of vertebrates arrested at second meiotic metaphase due to a cytostatic factor recently identified as p39mos, the product of the proto-oncogene c-mos. Calpain can destroy both p39mos and cyclin in vitro in extracts prepared from metaphase-arrested Xenopus eggs, but only when free Ca2+ concentration is raised to the millimolar range. When free Ca2+ concentration is raised for only 30 s to the micromolar range, as occurs in physiological conditions after fertilization, cyclin degradation is induced, byt p39mos is not degraded. Cyclin proteolysis at micromolar free Ca2+, is not inhibited by calpastatin, and therefore does not involve calpain. A cyclin mutant modified in the destruction box is found to be resistant at micromolar, but not millimolar free Ca2+, suggesting that the ubiquitin pathway mediates cyclin degradation at micromolar Ca2+ concentration whereas calpain is involved at the millimolar level. A synthetic peptide which binds Ca(2+)-calmodulin with high affinity suppresses cyclin degradation at micromolar but not millimolar free Ca2+, and this only when it is present in the extract during the first 30 s after raising free Ca2+ concentration. The inhibition of the cyclin degradation pathway by the Ca(2+)-calmodulin binding peptide can be overcome by adding calmodulin. These results strongly suggest that a Ca(2+)-calmodulin process is required as an early event following fertilization to release the cyclin degradation pathway from inhibition in metaphase-arrested eggs. In contrast, p39mos degradation is not required.  相似文献   

6.
Expression of stem cell antigen-1 (Ly-6A/E) is developmentally regulated in murine B cells. However, little is known about its modulation during B cell activation. We report here the differential regulation of Ly-6A/E expression in response to diverse activation signals in mature B cells. Stimulation of resting B cells through the antigen receptor (BCR) inhibited, Ly-6A/E surface expression in dose dependent manner. Activation induced downregulation of Ly-6A/E is specific to BCR mediated signaling events as stimulation of B cells with anti-CD40, lipopolysaccharide or interferon-γ induced upregulation of Ly-6A/E surface expression. The activation induced differential modulation of Ly-6A/E expression is mediated at the mRNA levels. A role for BCR signaling in inhibition of Ly-6A/E expression was further confirmed using STAT-1−/− B cells, which expressed constitutive, but not inducible Ly-6A/E. The BCR induced inhibition of Ly-6A/E RNA and surface expression was mimicked by ionomycin, but not phorbol myristate acetate, indicating a role for calcium but not protein kinase C dependent signaling events. Inhibition of calcineurin reversed the BCR or ionomycin inhibited Ly-6A/E expression. Interestingly, in vitro differentiation analysis of Ly-6A/E+ and Ly-6A/E splenic B cells revealed the Ly-6A/E+ cells to be the major source of antibody production, suggesting a potential role for Ly-6A/E in B cell differentiation. These studies provide the first evidence for activation induced differential modulation and differentiation of Ly-6A/E+ B cells.  相似文献   

7.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

8.
For the clarification of larval-to-adult muscle conversion, the authors established primary culture methods for adult- and larval-type myoblasts in the frog, Xenopus laevis, and examined the hormonal response in each case. The cell types were enzymatically dissociated from adult frog leg and tadpole tail muscles, respectively. The cells became attached to culture plates, proliferated, and fused with each other to form multinucleated myotubes within one week. Five significant differences between the two cell types were noted. (1) Adult cells showed greater proliferation activity than larval cells, the former increasing 5.5-fold over 6 days while the latter increase only 2.5-fold. (2) Differentiation (fusion) of larval type myoblasts started earlier. Cell fusion began on day 2 or 3 in larval cells and on day 4 in adult cells. (3) The metamorphic hormone, triiodo-L-thyronine (T3) decreased larval cell numbers to 56% of that of control-cultures on day 7 but had no effect on adult cell number. DNA synthetic activity (3H-thymidine incorporation) in larval cells decreased under T3 (10(-8) M) to 45% of the control level on day 7. (4) Differentiation of adult myoblasts into myotubes was promoted by T3, whereas that of larval cells diminished by half. (5) Myotube death was induced by T3 specifically in larval but not in adult cultures. In addition to the myotube death, double staining with TUNEL (in situ DNA nick end labeling) and anti-desmin antibody indicated that T3 induces myoblast (desmin+ cell) death specifically in larval but not in adult cells. It is thus evident that the conversion of a larval-type myogenic system during metamorphosis becomes possible through nearly totally specific control of cell division, cell differentiation, and programmed cell death at a precursor cell level by T3.  相似文献   

9.
p27(Kip1) associates with cyclin/cdk complexes and inhibiting cdk activity, and overexpression of p27(Kip1) induces G1 arrest. We found that p27(Kip1) overexpression inhibits cdk2 kinase activity, but not cdk6 kinase activity in HeLa cells. The amount of p27(Kip1) associated with cdk2 was significantly higher than that associated with cdk6. cdk6 complexes contained detectable amounts of p27(Kip1) in all human cell lines examined, except in HeLa cells where p27(Kip1) preferentially associated with cdk2. It appears that in HeLa cells overexpressed p27(Kip1) fails to inhibit cdk6 kinase activity because of low binding affinity of cdk6 to p27(Kip1). The low binding affinity is due to a low level of the cdk6/cyclin D complexes. Functional inactivation of pRb has an effect on p27(Kip1) association with cdk6/cyclin D complexes.  相似文献   

10.
11.
There is much evidence that the kinase cascade which leads to the phosphorylation of c-jun plays an important signaling role in the mediation of programmed cell death. We have previously shown that c-jun is phosphorylated in a model of induced apoptotic death in dopamine neurons of the substantia nigra in vivo. To determine the generality and functional significance of this response, we have examined c-jun phosphorylation and the effect on cell death of a novel mixed lineage kinase inhibitor, CEP11004, in the 6-hydroxydopamine model of induced apoptotic death in dopamine neurons. We found that expression of total c-jun and Ser73-phosphorylated c-jun is increased in this model and both colocalize with apoptotic morphology. CEP11004 suppresses apoptotic death to levels of 44 and 58% of control values at doses of 1.0 and 3.0 mg/kg, respectively. It also suppresses, to approximately equal levels, the number of profiles positive for the activated form of capase 9. CEP11004 markedly suppresses striatal dopaminergic fiber loss in these models, to only 22% of control levels. We conclude that c-jun phosphorylation is a general feature of apoptosis in living dopamine neurons and that the mixed lineage kinases play a functional role as up-stream mediators of cell death in these neurons.  相似文献   

12.
In the present study, we describe the features of programmed cell death of ovarian follicle cells, occurring during the late developmental stages of oogenesis in the olive fruit fly, Bactrocera oleae and the medfly, Ceratitis capitata. During stage 14, the follicle cells contain autophagic vacuoles, and they do not exhibit caspase activity in all parts of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high- but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. These data argue for the presence of an autophagy-mediated cell death program in the ovarian follicle cell layer in both species. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. We strongly believe that during the termination of the above Dipteran oogenesis, an efficient mechanism of absorption of the degenerated follicle cells is selectively activated, in order to prevent the blockage of the ovarioles and thus robustly support the physiological completion of the ovulation process.  相似文献   

13.
14.
The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Elevated levels of saturated fatty acids show a strong cytotoxic effect in liver cells. Sirtuin 3 (SIRT3), a mitochondrially localized member of NAD+‐dependent deacetylase has been shown to protect hepatocytes against the oxidative stress. The role of SIRT3 on the cytotoxicity caused by fatty acids in liver cells is not fully understood. The aim of this study was to evaluate the expression level of SIRT3, oxidative stress, and mitochondrial impairments in human hepatoma HepG2 cells exposed to palmitic acid (PA). Our results showed that PA treatment caused the deposition of lipid droplets and resulted in an increased expression of tumor necrosis factor‐α in a dose‐dependent manner. Excessive accumulation of PA induces the reactive oxygen species formation and apoptosis while dissipating the mitochondrial transmembrane potential. The level of SIRT3 expression in both nuclear and mitochondrial fractions in HepG2 cells was decreased with the increase in PA concentrations. However, in the cytosolic fraction, the SIRT3 was undetectable. In conclusion, our results showed that PA caused an increase in inflammation and oxidative stress in HepG2 cells. The exposure of PA also resulted in the decline in transmembrane potential and an increase in apoptosis. The underexpression of nuclear and mitochondrial SIRT3 by PA suggests that the PA target the process that regulates the stress‐related gene expression and mitochondrial functions.  相似文献   

16.
Cyclin-dependent kinase 5 is predominantly expressed in postmitotic neurons and plays a role in neurite elongation during development. It has also been postulated to play a role in apoptosis in a variety of cells, including neurons, but little is known about the generality and functional significance of cdk5 expression in neuronal apoptosis in living brain. We have therefore examined its expression and that of its known activators, p35, p39 and p67, in models of induced apoptosis in neurons of the substantia nigra. We find that cdk5 is expressed in apoptotic profiles following intrastriatal injection of 6-hydroxydopamine and axotomy. It is expressed exclusively in profiles which are in late morphologic stages of apoptosis. In these late stages, derivation of the profiles from neurons, and localization of expression to the nucleus, can be demonstrated by co-labeling with a neuron-specific nuclear marker, NeuN. In another model of induced apoptotic death in nigra, produced by developmental striatal lesion, kinase activity increases in parallel with cell death. While mRNAs for all three cdk5 activators are expressed in nigra during development, only p35 protein is expressed in apoptotic profiles. We conclude that cdk5/p35 expression is a general feature of apoptotic neuron death in substantia nigra neurons in vivo.  相似文献   

17.
Cyclins, cyclin-dependent kinases (CDKs) and the CDK inhibitor p27(kip1) are known to be involved in the regulation of G(1)/S phase transition by estrogen in the rodent endometrium. Little is known, however, of the cell-specific location and regulation of these proteins during this process, or the way they mediate the differential effect of estrogen in the epithelium and stroma of the endometrium. Here we studied the cell-specific regulation of D-type cyclin (D(1-3)), of cyclin A and E, of CDK(2) and p27(kip1) by 17beta-estradiol in the endometrium of ovariectomized rats. Time-course changes in these proteins in the endometrium of ovariectomized rats were examined by immunohistochemistry at 2, 4, 8, 12, 20, 28 and 32 h after estrogen stimulation. The expression of proliferation cell nuclear antigen (PCNA) was also studied as a marker of proliferating cells. As expected from previous studies, all the proteins investigated were up-regulated by estrogen, with peak times from 8 to 32 h. The induction of cyclin D(1) is predominant in the glandular epithelium, whereas cyclin D(3) increases mainly in the luminal epithelium. The up-regulation of p27(kip1) is restricted to stromal cells with a 'gradient-like' expression pattern, in which the sub-epithelial (functional) layer showed stronger staining than the basal layer. The differential regulation of cyclins and p27(kip1) in the epithelium and stroma of the endometrium appear indicative of distinct actions of estrogen in different cell types in the uterus, as D-type cyclins mediate the proliferative effect of estrogen in epithelial cells while p27(kip1) might help prevent the same effect in the stroma.  相似文献   

18.
We have examined c‐Jun protein expression by immunocytochemistry in normal and pathologically induced cell death by focusing primarily on the developing neuromuscular system of the chick embryo. Several commercially available antibodies against c‐Jun were used in combination with the TUNEL technique or propidium iodide staining for detection of cells undergoing programmed cell death (PCD). Among these, a rabbit polyclonal antibody raised against the amino acids 91‐105 mapping to the amino terminal domain of mouse c‐Jun p39 (c‐Jun/sc45) transiently immunostained the cytoplasm of dying spinal cord motoneurons at a time coincident with naturally occurring motoneuron death. Late apoptotic bodies were devoid of c‐Jun/sc45 immunoreactivity. A monoclonal antibody directed against a region corresponding to the amino acids 26‐175 of c‐Jun p39 (c‐Jun/mAB) did not specifically immunostain dying neurons, but, rather, showed nuclear immunolabeling in almost all healthy motoneurons. Experimentally induced programmed death of motoneurons by means of early limb bud ablation, axotomy, or in ovo injection of the neurotoxin β‐bungarotoxin increased the number of dying cells showing positive c‐Jun/sc45 immunoreactivity. Immunoelectron microscopy with c‐Jun/sc45 antibody showed that the signal was present in the cytoplasm without a specific association with organelles, and was also present in large lysosome‐like dense bodies inside neuritic profiles. Similar findings were obtained in different types of cells undergoing normal or experimentally induced PCD. These include dorsal root ganglion neurons, Schwann cells, muscle cells, neural tube and neural crest cells during the earliest stages of spinal cord development, and interdigital mesenchymal cells of hindlimbs. In all these cases, cells showed morphological and histochemical characteristics of apoptotic‐like PCD. By contrast, motoneurons undergoing necrotic cell death induced by the excitotoxin N‐methyl‐D ‐aspartate did not show detectable c‐Jun/sc45 immunoreactivity, although they displayed an increase in nuclear c‐Jun/mAB immunostaining. In Western blot analysis of spinal cord extracts, c‐Jun/sc45 antibody weakly detected a 39‐kD band, corresponding to c‐Jun, and more strongly detected two additional bands of 66 and 45 kD which followed developmental changes coincident with naturally occurring or experimentally stimulated apoptotic motoneuron death. By contrast, c‐Jun/mAB only recognized a single p39 band as expected for c‐Jun, and did not display changes associated with neuronal apoptosis. From these data, we conclude that the c‐Jun/sc45 antibody recognizes apoptosis‐related proteins associated with the early stages of morphological PCD in a variety of neuronal and nonneuronal cells, and that c‐Jun/sc45 is a reliable marker for a variety of developing cells undergoing programmed cell death. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 171–190, 1999  相似文献   

19.
The larval–pupal transformation of Manduca sexta is accompanied by the loss of the abdominal prolegs. The proleg muscles degenerate, the dendritic arbors of proleg motoneurons regress, and a subset of the proleg motoneurons dies. The regression and death of proleg motoneurons are triggered by the prepupal peak of ecdysteroids in the hemolymph. To investigate the possible involvement of protein synthesis in these events, we gave insects repeated injections of the protein synthesis inhibitor, cycloheximide (CHX), during the prepupal peak. Examination of insects 3–5 days following CHX treatment showed that CHX inhibited the death of proleg motoneurons and the production of pupal cuticle in a dose-dependent fashion. When insects were allowed to survive for 10 days after the final CHX injection, motoneuron death and pupal cuticle production sometimes occurred belatedly, apparently in response to the ecdysteroid rise that normally triggers adult development. CHX treatments that inhibited motoneuron death were less effective in inhibiting dendritic regression in the same neurons. In another set of experiments, abdomens were isolated from the ecdysteroid-secreting glands prior to the prepupal peak, and infused with 20-hydroxyecdysone (20-HE). Single injections of CHX delivered just prior to the start of the 20-HE infusion inhibited motoneuron death and pupal cuticle production, but in the range of doses tested, did not prevent dendritic regression. Our findings suggest that protein synthesis is a required step in the steroid-mediated death of proleg motoneurons, and that dendritic regression is less susceptible to inhibition by CHX than is motoneuron death. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Exopolymer particles are found throughout the ocean and play a significant biogeochemical role in carbon cycling. Transparent exopolymer particles (TEP) are composed of acid polysaccharides, and Coomassie staining particles (CSP) are proteins. TEPs have been extensively studied in the ocean, while CSP have been largely overlooked. The objective of this research was to determine the role of stress and cell permeability in the formation of TEP and CSP. The diatom Thalassiosira weissflogii and cyanobacterium Synechococcus elongatus were grown in batch cultures and exposed to hydrogen peroxide (0, 10, and 100 μM) as an environmental stressor. There was no correlation between TEP and CSP concentrations, indicating that they are different populations of particles rather than different chemical components of the same particles. CSP concentrations were not affected by hydrogen peroxide concentration and did not correlate with indicators of stress and cell death. In contrast, TEP concentrations in both taxa were correlated with a decrease in the effective quantum yield of photosystem II, increased activity of caspase‐like enzymes, and an increase in the proportion of the population with permeable cell membranes, indicating that TEP production was associated with the process of cell death. These data show that different environmental factors and physiological processes affected the production of TEP and CSP by phytoplankton. TEP and CSP are separate populations of exopolymer particles with potentially different biogeochemical roles in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号