首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The RNA:pseudouridine (Psi)-synthase family is one of the most complex families of RNA modification enzymes. Ten genes encoding putative RNA:Psi-synthases have been identified in S. cerevisiae. Most of the encoded enzymes have been characterized experimentally. Only the putative RNA:Psi-synthase Pus2p (encoded by the YGL063w ORF) had no identified substrate. Here, we analyzed Psi residues in cytoplasmic and mitochondrial tRNAs extracted from S. cerevisiae strains, carrying disruptions in the PUS1 and/or PUS2 ORFs. Our results demonstrate that Pus2p is a mitochondrial-specific tRNA:Psi-synthase acting at positions 27 and 28 in tRNAs. The importance of the Asp56 residue in the conserved ARTD motif of the Pus2p catalytic site is demonstrated in vivo. Interestingly, in spite of the absence of a characteristic N-terminal targeting signal, our data strongly suggest an efficient and rapid targeting of Pus2p in yeast mitochondria. In contradiction with the commonly held idea that a unique nuclear gene encodes the enzyme required for both cytoplasmic and mitochondrial tRNA modifications, here we show the existence of an enzyme specifically dedicated to mitochondrial tRNA modification (Pus2p), the corresponding modification in cytoplasmic tRNAs being catalyzed by another protein (Pus1p).  相似文献   

2.
To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.  相似文献   

3.
4.
A missense mutation in the PUS1 gene affecting a highly conserved amino acid has been associated with mitochondrial myopathy and sideroblastic anemia (MLASA), a rare autosomal recessive oxidative phosphorylation disorder. The PUS1 gene encodes the enzyme pseudouridine synthase 1 (Pus1p) that is known to pseudouridylate tRNAs in other species. Total RNA was isolated from lymphoblastoid cell lines established from patients, parents, unaffected siblings, and unrelated controls, and the tRNAs were assayed for the presence of pseudouridine (Psi) at the expected positions. Mitochondrial and cytoplasmic tRNAs from MLASA patients are lacking modification at sites normally modified by Pus1p, whereas tRNAs from controls, unaffected siblings, or parents all have Psi at these positions. In addition, there was no Pus1p activity in an extract made from a cell line derived from a patient with MLASA. Immunohistochemical staining of Pus1p in cell lines showed nuclear, cytoplasmic, and mitochondrial distribution of the protein, and there is no difference in staining between patients and unaffected family members. MLASA is thus associated with absent or greatly reduced tRNA pseudouridylation at specific sites, implicating this pathway in its molecular pathogenesis.  相似文献   

5.
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.  相似文献   

6.
The pseudouridine (Psi) synthases Pus7p and TruD define a family of RNA-modifying enzymes with no sequence similarity to previously characterized Psi synthases. The 2.2 A resolution structure of Escherichia coli TruD reveals a U-shaped molecule with a catalytic domain that superimposes closely on that of other Psi synthases. A domain that appears to be unique to TruD/Pus7p family enzymes hinges over the catalytic domain, possibly serving to clasp the substrate RNAs. The active site comprises residues that are conserved in other Psi synthases, although at least one comes from a structurally distinct part of the protein. Remarkably, the connectivity of the structural elements of the TruD catalytic domain is a circular permutation of that of its paralogs. Because the sequence of the permuted segment, a beta-strand that bisects the catalytic domain, is conserved among orthologs from bacteria, archaea and eukarya, the permutation likely happened early in evolution.  相似文献   

7.
So far, four RNA:pseudouridine (Ψ)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Ψ-synthases responsible for several U→Ψ conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Ψ-synthases, four additional open reading frames (ORFs) encoding putative RNA:Ψ-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Ψ residue normally present in the fully matured mitochondrial rRNAs (Ψ2819 in 21S rRNA) was missing, while Ψ residues at all the tested pseudouridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U→Ψ conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71→A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Ψ2819 synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Ψ-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Ψ2819 in mitochondrial 21S rRNA is not essential for cell viability.  相似文献   

8.
9.
Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.  相似文献   

10.
RNA-guided pseudouridine (Psi) synthesis in Archaea and Eukarya requires a four-protein one-RNA containing box H/ACA ribonucleoprotein (RNP) complex. The proteins in the archaeal RNP are aCbf5, aNop10, aGar1 and L7Ae. Pyrococcus aCbf5-aNop10 is suggested to be the minimal catalytic core in this synthesis and the activity is enhanced by L7Ae and aGar1. The protein aCbf5 is homologous to eukaryal Cbf5 (dyskerin, NAP57) as well as to bacterial TruB and eukaryal Pus4; the last two produce YPsi55 in tRNAs in a guide RNA-independent manner. Here, using recombinant Methanocaldococcus jannaschii proteins, we report that aCbf5 and aGar1 together can function as a tRNA Psi55 synthase in a guide RNA-independent manner. This activity is enhanced by aNop10, but not by L7Ae. The aCbf5 alone can also produce Psi55 in tRNAs that contain the canonical 3'-CCA sequence and this activity is stimulated by aGar1. These results suggest that the roles of accessory proteins are different in guide RNA-dependent and independent Psi synthesis by aCbf5. The presence of conserved C (or U) and A at tRNA positions 56 and 58, respectively, which are required for TruB/Pus4 activity, is not essential for aCbf5-mediated Psi55 formation. Conserved A58 in tRNA normally forms a tertiary reverse Hoogstein base pair with an equally conserved U54. This base pair is recognized by TruB. Apparently aCbf5 does not require this base pair to recognize U55 for conversion to Psi55.  相似文献   

11.
12.
Protein aNOP10 has an essential scaffolding function in H/ACA sRNPs and its interaction with the pseudouridine(Ψ)-synthase aCBF5 is required for the RNA-guided RNA:Ψ-synthase activity. Recently, aCBF5 was shown to catalyze the isomerization of U55 in tRNAs without the help of a guide sRNA. Here we show that the stable anchoring of aCBF5 to tRNAs relies on its PUA domain and the tRNA CCA sequence. Nonetheless, interaction of aNOP10 with aCBF5 can counterbalance the absence of the PUA domain or the CCA sequence and more generally helps the aCBF5 tRNA:Ψ55-synthase activity. Whereas substitution of the aNOP10 residue Y14 by an alanine disturbs this activity, it only impairs mildly the RNA-guided activity. The opposite effect was observed for the aNOP10 variant H31A. Substitution K53A or R202A in aCBF5 impairs both the tRNA:Ψ55-synthase and the RNA-guided RNA:Ψ-synthase activities. Remarkably, the presence of aNOP10 compensates for the negative effect of these substitutions on the tRNA: Ψ55-synthase activity. Substitution of the aCBF5 conserved residue H77 that is expected to extrude the targeted U residue in tRNA strongly affects the efficiency of U55 modification but has no major effect on the RNA-guided activity. This negative effect can also be compensated by the presence of aNOP10.  相似文献   

13.
14.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

15.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

16.
Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.  相似文献   

17.
Yeast Pus1p catalyzes the formation of pseudouridine (psi) at specific sites of several tRNAs, but its function is not essential for cell viability. We show here that Pus1p becomes essential when another tRNA:pseudouridine synthase, Pus4p, or the essential minor tRNA for glutamine are mutated. Strikingly, this mutant tRNA, which carries a mismatch in the T psi C arm, displays a nuclear export defect. Furthermore, nuclear export of at least one wild-type tRNA species becomes defective in the absence of Pus1p. Our data, thus, show that the modifications formed by Pus1p are essential when other aspects of tRNA biogenesis or function are compromised and suggest that impairment of nuclear tRNA export in the absence of Pus1p might contribute to this phenotype.  相似文献   

18.
Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p. In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains. Depletion of Pus3p results in accumulation of the aminoacylated mutant tRNA(Arg)(CCG) in nuclei, while depletion of Pus4p results in decreased stability of the mutant tRNA. Interestingly, the degradation of mutant unstable forms of tRNA(Arg)(CCG) does not require the Trf4p poly(A) polymerase, suggesting that yeast cells possess multiple pathways for tRNA decay. These data demonstrate that La functions redundantly with both tRNA modifications and proteins that associate with tRNAs to achieve tRNA structural stability and efficient biogenesis.  相似文献   

19.
Many different modified nucleotides are found in naturally occurring tRNA, especially in the anticodon region. Their importance for the efficiency of the translational process begins to be well documented. Here we have analyzed the in vivo effect of deleting genes coding for yeast tRNA-modifying enzymes, namely Pus1p, Pus3p, Pus4p, or Trm4p, on termination readthrough and +1 frameshift events. To this end, we have transformed each of the yeast deletion strains with a lacZ-luc dual-reporter vector harboring selected programmed recoding sites. We have found that only deletion of the PUS3 gene, encoding the enzyme that introduces pseudouridines at position 38 or 39 in tRNA, has an effect on the efficiency of the translation process. In this mutant, we have observed a reduced readthrough efficiency of each stop codon by natural nonsense suppressor tRNAs. This effect is solely due to the absence of pseudouridine 38 or 39 in tRNA because the inactive mutant protein Pus3[D151A]p did not restore the level of natural readthrough. Our results also show that absence of pseudouridine 39 in the slippery tRNA(UAG)(Leu) reduces +1 frameshift efficiency. Therefore, the presence of pseudouridine 38 or 39 in the tRNA anticodon arm enhances misreading of certain codons by natural nonsense tRNAs as well as promotes frameshifting on slippery sequences in yeast.  相似文献   

20.
Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA   总被引:1,自引:0,他引:1  
Gurha P  Gupta R 《RNA (New York, N.Y.)》2008,14(12):2521-2527
Pus10, a recently identified pseudouridine (Ψ) synthase, does not belong to any of the five commonly identified families of Ψ synthases. Pyrococcus furiosus Pus10 has been shown to produce Ψ55 in tRNAs. However, in vitro studies have identified another mechanism for tRNA Ψ55 production in Archaea, which uses Cbf5 and other core proteins of the H/ACA ribonucleoprotein complex, in a guide RNA-independent manner. Pus10 homologs have been observed in nearly all sequenced archaeal genomes and in some higher eukaryotes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in the tRNAs of Archaea and higher eukaryotes and its absence in yeast and bacteria. No tRNA Ψ54 synthase has been reported so far. Here, using recombinant Methanocaldococcus jannaschii and P. furiosus Pus10, we show that these proteins can function as synthase for both tRNA Ψ54 and Ψ55. The two modifications seem to occur independently. Salt concentration dependent variations in these activities of both proteins are observed. The Ψ54 synthase activity of M. jannaschii protein is robust, while the same activity of P. furiosus protein is weak. Probable reasons for these differences are discussed. Furthermore, unlike bacterial TruB and yeast Pus4, archaeal Pus10 does not require a U54•A58 reverse Hoogstein base pair and pyrimidine at position 56 to convert tRNA U55 to Ψ55. The homology of eukaryal Pus10 with archaeal Pus10 suggests that the former may also have a tRNA Ψ54 synthase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号