首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asexual stages of Sarcocystis neurona were seen in cultured bovine monocytes (M617) inoculated with tissue homogenates from the spinal cord of a horse with naturally acquired protozoal myelitis. Organisms first were observed as intracytoplasmic schizonts and later as motile extracellular zoites capable of infecting surrounding M617 cells. Parasites most often occurred as clusters of merozoites dispersed throughout the host cell cytoplasm; however, schizonts also contained merozoites arranged in a radial fashion surrounding a prominent residual body. Schizonts divided by endopolygeny. The parasite has been maintained beyond 280 days in the laboratory by serial passage of infected M617 cells.  相似文献   

2.
Equine protozoal myeloencephalitis (EPM) is a debilitating neurologic disease of the horse. The causative agent. Sarcocystis neurona, has been suggested to be synonymous with Sarcocystis falcatula, implying a role for birds as intermediate hosts. To test this hypothesis, opossums (Didelphis virginiana) were fed muscles containing S. falcatula sarcocysts from naturally infected brown-headed cowbirds (Molothrus ater). Ten horses were tested extensively to ensure no previous exposure to S. neurona and were quarantined for 14 days, and then 5 of the horses were each administered 10(6) S. falcatula sporocysts collected from laboratory opossums. Over a 12-wk period, 4 challenged horses remained clinically normal and all tests for S. neurona antibody and DNA in serum and cerebrospinal fluid were negative. Rechallenge of the 4 seronegative horses had identical results. Although 1 horse developed EPM, presence of S. neurona antibody prior to challenge strongly indicated that infection occurred before sporocyst administration. Viability of sporocysts was confirmed by observing excystation in equine bile in vitro and by successful infection of naive brown-headed cowbirds. These data suggest that S. falcatula and S. neurona are not synonymous. One defining distinction is the apparent inability of S. falcatula to infect horses, in contrast to S. neurona, which was named when cultured from equine spinal cord.  相似文献   

3.
Eight ponies and a horse were inoculated orally with sporocysts of Sarcocystis fayeri from dogs. They were examined for clinical signs of infection and killed 10, 15, 20, 25, 30, 50 (horse), 77, 101, and 156 days after inoculation (DAI). Elevated temperature was observed in three ponies 20 and 26 DAI and anemia was observed in three ponies and the horse 15 to 69 DAI. Schizonts were found in or near cells lining capillaries or arteries of the heart, brain, and kidney 10, 20, and 25 DAI. Immature cysts containing only metrocytes were first found in muscles 50 DAI. Mature intramuscular cysts containing metrocytes and zoites or zoites alone were found 77, 101, and 156 DAI and produced patent infections in dogs fed infected meat.  相似文献   

4.
Sarcocystis neurona is the most important cause of equine protozoal myeloencephalitis (EPM), a neurologic disease of the horse. In the present work, the kinetics of S. neurona invasion is determined in the equine model. Six ponies were orally inoculated with 250 x 10(6) S. neurona sporocysts via nasogastric intubation and killed on days 1, 2, 3, 5, 7, and 9 postinoculation (PI). At necropsy, tissue samples were examined for S. neurona infection. The parasite was isolated from the mesenteric lymph nodes at 1, 2, and 7 days PI; the liver at 2, 5, and 7 days PI; and the lungs at 5, 7, and 9 days PI by bioassays in interferon gamma gene knock out mice (KO) and from cell culture. Microscopic lesions consistent with an EPM infection were observed in brain and spinal cord of ponies killed 7 and 9 days PI. Results suggest that S. neurona disseminates quickly in tissue of naive ponies.  相似文献   

5.
Sarcocystis neuronan n. sp. is proposed for the apicomplexan taxon associated with myeloencephalitis in horses. Only asexual stages of this parasite presently are known, and they are found within neuronal cells and leukocytes of the brain and spinal cord. The parasite is located in the host cell cytoplasm, does not have a parasitophorous vacuole, and divides by endopolygeny. Schizonts are 5-35 microns x 5-20 microns and contain 4-40 merozoites arranged in a rosette around a prominent residual body. Merozoites are approximately 4 x 1 micron, have a central nucleus, and lack rhoptries. Schizonts and merozoites react with Sarcocystis cruzi antiserum but not with Caryospora bigenetica. Toxoplasma gondii, Hammondia hammondi, or Neospora caninum antisera in an immunohistochemical test.  相似文献   

6.
Schizonts of Sarcocystis speeri Dubey and Lindsay, 1999 were cultured in vitro in bovine monocyte and equine kidney cell cultures inoculated with infected tissues of nude and gamma-interferon knockout mice fed sporocysts from opossums, Didelphis albiventris. At least 1 asexual cycle was completed in 3 days. In vitro-grown merozoites were structurally and antigenically distinct from those of Sarcocystis neurona and Sarcocystis falcatula. Culture-derived merozoites of S. speeri were not infective to budgerigars (Melopsittacus undulatus).  相似文献   

7.
Sporocysts of Sarcocystis sp. from dogs fed with ibex meat were orally inoculated into kids and lambs. Three kids, given 4 x 10(6) and 4 x 10(4) sporocysts, respectively, died from acute sarcocystosis. Schizonts, though found in all the tissues of these kids, were particularly numerous in the kidneys, brain and spinal cord. Another three kids inoculated with 5 x 10(3) sporocysts and two lambs, inoculated with 1 x 10(6) and 5 x 10(3) sporocysts, respectively, showed no clinical signs and were sacrificed between 111 and 130 days after infection. Mature sarcocysts were found both in the heart and striated muscles of these animals. No parasitic stage was found in two kids and two lambs used as uninoculated controls. Biological differences between Sarcocystis sp. from ibex and the other sarcosporidians with a canine-caprine or canine-ovine cycle are stressed.  相似文献   

8.
Sarcocystis speeri Dubey and Lindsay, 1999 from the South American opossum Didelphis albiventris was successfully transmitted to the North American opossum Didelphis virginiana. Sporocysts from a naturally infected D. albiventris from Argentina were fed to 2 gamma-interferon knockout (KO) mice. The mice were killed 64 and 71 days after sporocyst feeding (DAF). Muscles containing sarcocysts from the KO mouse killed 71 DAF were fed to a captive D. virginiana; this opossum shed sporocysts 11 days after ingesting sarcocysts. Sporocysts from D. virginiana were fed to 9 KO mice and 4 budgerigars (Melopsittacus undulatus). Schizonts, sarcocysts, or both of S. speeri were found in tissues of all 7 KO mice killed 29-85 DAF; 2 mice died 39 and 48 DAF were not necropsied. Sarcocystis stages were not found in tissues of the 4 budgerigars fed S. speeri sporocysts and killed 35 DAE These results indicate that S. speeri is distinct from Sarcocystis falcatula and Sarcocystis neurona, and that S. speeri is present in both D. albiventris and D. virginiana.  相似文献   

9.
A Sarcocystis neurona-like parasite was associated with acute sarcocystosis in the brain of an ibis (Carphibis spinicollis). Numerous schizonts and merozoites were found extravascularly in encephalitic lesions. These schizonts reacted positively with anti-S. neurona and anti-S. falcatula polyclonal antibodies in an immunohistochemical test. Sarcocysts of an unidentified Sarcocystis species were present in the brain, heart, and skeletal muscles. Sarcocysts in skeletal muscles were microscopic, and the sarcocyst wall was up to 3 microm thick. The villar protrusions on the sarcocyst wall were up to 4.5 microm long, constricted at the base, and expanded laterally. Schizonts and sarcocysts distinct from those of S. falcatula.  相似文献   

10.
Sarcocystis sporocysts from the intestines of 2 opossums (Didelphis albiventris) from Argentina were fed to gamma-interferon knockout (KO) and nude mice. Protozoal schizonts were seen in brain, liver, spleen, and adrenal glands of mice examined 33-64 days after feeding sporocysts. Sarcocysts were seen in skeletal muscles of KO mice 34-71 days after feeding sporocysts. Schizonts and sarcocysts were structurally similar to Sarcocystis speeri Dubey and Lindsay, 1999 seen in mice fed sporocysts from the North American opossum Didelphis virginiana from the United States.  相似文献   

11.
12.
Sarcocystis neurona was isolated from the brain of a juvenile, male southern sea otter (Enhydra lutris nereis) suffering from CNS disease. Schizonts and merozoites in tissue sections of the otter's brain reacted with anti-S. neurona antiserum immunohistochemically. Development in cell culture was by endopolyogeny and mature schizonts were first observed at 3 days postinoculation. PCR of merozoite DNA using primer pairs JNB33/JNB54 and restriction enzyme digestion of the 1100 bp product with Dra I indicated the organism was S. neurona. Four of four interferon-gamma gene knockout mice inoculated with merozoites developed S. neurona-associated encephalitis. Antibodies to S. neurona but not Sarcocystis falcatula, Toxoplasma gondii, or Neospora caninum were present in the serum of inoculated mice. This is the first isolation of S. neurona from the brain of a non-equine host.  相似文献   

13.
Equine protozoal myeloencephalitis (EPM) was diagnosed in 10 horses. By electron microscopy, schizonts were found in intact host cells of the spinal cords or, more frequently, free in the extracellular spaces. Developmental stages of schizonts differed morphologically, and the late stage of schizogony was characterized by endopolygeny. These findings permitted tentative identification of the protozoon as a Sarcocystis sp. Free merozoites were present in the extracellular spaces or in cells of the spinal cord. Pericytes of capillaries were most frequently parasitized by merozoites were present in the extracellular spaces or in cells of te spinal cord. Pericytes of capillaries were most frequently parasitized by merozoites, but the cytoplasm of neurons, macrophages, intravascular and tissue neutrophils, and axons of myelinated nerve fibers also contained these organisms. The presence of parasites in the cytoplasm of tissue and circulating neutrophils suggest that this putative Sarcocystis sp. may have a hematogenous phase of infection.  相似文献   

14.
An isolate of Sarcocystis neurona (SN6) was obtained from the spinal cord of a horse from Oregon with neurologic signs. The parasite was isolated in cultures of bovine monocytes and equine spleen cells. The parasite divided by endopolygeny and completed at least one asexual cycle in cell cultures in three days. Two gamma interferon knockout mice inoculated with cell culture-derived merozoites became ill 35 d later and S. neurona schizonts and merozoites were found in encephalitic lesions. The parasite in tissue sections of mice reacted with S. neurona-specific antibodies and S. neurona was reisolated from the brain of knockout mice.  相似文献   

15.
The ability of ponazuril to prevent or limit clinical signs of equine protozoal myeloencephalitis (EPM) after infection with Sarcocystis neurona was evaluated. Eighteen horses were assigned to 1 of 3 groups: no treatment, 2.5 mg/kg ponazuril, or 5.0 mg/kg ponazuril. Horses were administered ponazuril, once per day, beginning 7 days before infection (study day 0) and continuing for 28 days postinfection. On day 0, horses were stressed by transport and challenged with 1 million S. neurona sporocysts per horse. Sequential neurologic examinations were performed, and serum and cerebrospinal fluid were collected and assayed for antibodies to S. neurona. All horses in the control group developed neurologic signs, whereas only 71 and 40% of horses in the 2.5 and 5.0 mg/kg ponazuril groups, respectively, developed neurologic abnormalities. This was significant at P = 0.034 by using Fisher exact test. In addition, seroconversion was decreased in the 5.0 mg/kg group compared with the control horses (100 vs. 40%; P = 0.028). Horses with neurologic signs were killed, and a post-mortem examination was performed. Mild-to-moderate, multifocal signs of neuroinflammation were observed. These results confirm that treatment with ponazuril at 5.0 mg/kg minimizes, but does not eliminate, infection and clinical signs of EPM in horses.  相似文献   

16.
Sarcocystis neurona causes encephalomyelitis in many species of mammals and is the most important cause of neurologic disease in the horse. Its complete life cycle is unknown, particularly its development and localization in the intermediate host. Recently, the raccoon (Procyon lotor) was recognized as a natural intermediate host of S. neurona. In the present study, migration and development of S. neurona was studied in 10 raccoons that were fed S. neurona sporocysts from experimentally infected opossums; 4 raccoons served as controls. Raccoons were examined at necropsy 1, 3, 5, 7, 10, 14, 15, 22, 37, and 77 days after feeding on sporocysts (DAFS). Tissue sections of most of the organs were studied histologically and reacted with anti-S. neurona-specific polyclonal rabbit serum in an immunohistochemical test. Parasitemia was demonstrated in peripheral blood of raccoons 3 and 5 DAFS. Individual zoites were seen in histologic sections of intestines of raccoons euthanized 1, 3, and 5 DAFS. Schizonts and merozoites were seen in many tissues 7 to 22 DAFS, particularly in the brain. Sarcocysts were seen in raccoons killed 22 DAFS. Sarcocysts at 22 DAFS were immature and seen only in skeletal muscle. Mature sarcocysts were seen in all skeletal samples, particularly in the tongue of the raccoon 77 DAFS; these sarcocysts were infective to laboratory-raised opossums. This is the first report of the complete development of S. neurona schizonts and sarcocysts in a natural intermediate host.  相似文献   

17.
Differences of red blood cell (RBC) aggregation among various mammalian species has been previously reported for whole blood, for RBC in autologous plasma, and for washed RBC re-suspended in polymer solutions. The latter observation implies the role of cellular factors, yet comparative studies of such factors are relatively limited. The present study thus investigated RBC aggregation and RBC electrophoretic mobility (EPM) for guinea pigs, rabbits, rats, humans and horses; RBC were re-suspended in isotonic 500 kDa dextran solutions for the EPM and aggregation measurements, with aggregation studies also done in autologous plasma. Salient results included: (1) species-specific RBC aggregation in both plasma and dextran (horse > human > rat > rabbit approximately = guinea pig) with a significant correlation between aggregation in the two media; (2) similar EPM values in PBS for rat, human and horse, a lower value for guinea pig, and a markedly reduced EPM for rabbit RBC; (3) EPM values in dextran with a rank order identical to that for cells in PBS; (4) relative EPM results indicating formation of a polymer-poor, low viscosity depletion layer at the RBC surface (greatest depletion for horse RBC). EPM-aggregation correlations were evident and generally consistent with the Depletion Model for aggregation, yet did not fully explain differences between species; additional studies at various ionic strengths and with various dextran fractions thus seem warranted.  相似文献   

18.
19.
Sarcocystis canis n. sp. is proposed for the protozoon associated with encephalitis, hepatitis, and generalized coccidiosis in dogs. Only asexual stages are known in macrophages, neurons, dermal, and other cells of the body. The parasite is located free in the host cell cytoplasm without a parasitophorous vacuole; schizonts divide by endopolygeny. Schizonts are 5-25 x 4-20 microns and contain 6-40 merozoites. Merozoites are approximately 5-7 microns x 1 micron and do not contain rhoptries. The parasite is PAS-negative and reacts with Sarcocystis cruzi antiserum but not with Toxoplasma gondii, Neospora caninum, or Caryospora bigenetica antisera in an immunohistochemical test.  相似文献   

20.
A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages of their life cycle in opossums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号