首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   

3.
Diatoms are frequently exposed to high light (HL) levels, which can result in photoinhibition and damage to PSII. Many microalgae can photoreduce oxygen using the Mehler reaction driven by PSI, which could protect PSII. The ability of Nitzschia epithemioides Grunow and Thalassiosira pseudonana Hasle et Heimdal grown at 50 and 300 μmol photons · m?2 · s?1 to photoreduce oxygen was examined by mass spectrometric measurements of 18O2. Both species exhibited significant rates of oxygen photoreduction at saturating light levels, with cells grown in HL exhibiting higher rates. HL‐grown T. pseudonana had maximum rates of oxygen photoreduction five times greater than N. epithemoides, with 49% of electrons transported through PSII being used to reduce oxygen. Exposure to excess light (1,000 μmol photons · m?2 · s?1) produced similar decreases in the operating quantum efficiency of PSII (Fq′/Fm′) of low light (LL)‐ and HL‐grown N. epithemoides, whereas HL‐grown T. pseudonana exhibited much smaller decreases in Fq′/Fm′ than LL‐grown cells. HL‐grown T. pseudonana and N. epithemioides exhibited greater superoxide and hydrogen peroxide production, higher activities (in T. pseudonana) of superoxide dismutase (SOD) and ascorbate peroxidase (APX), and increased expression of three SOD‐ and one APX‐encoding genes after 60 min of excess light compared to LL‐grown cells. These responses provide a mechanism that contributes to the photoprotection of PSII against photodamage.  相似文献   

4.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

5.
The diazotrophic cyanobacteria Trichodesmium spp. contribute approximately half of the known marine dinitrogen (N2) fixation. Rapidly changing environmental factors such as the rising atmospheric partial pressure of carbon dioxide (pCO2) and shallower mixed layers (higher light intensities) are likely to affect N2‐fixation rates in the future ocean. Several studies have documented that N2 fixation in laboratory cultures of T. erythraeum increased when pCO2 was doubled from present‐day atmospheric concentrations (~380 ppm) to projected future levels (~750 ppm). We examined the interactive effects of light and pCO2 on two strains of T. erythraeum Ehrenb. (GBRTRLI101 and IMS101) in laboratory semicontinuous cultures. Elevated pCO2 stimulated gross N2‐fixation rates in cultures growing at 38 μmol quanta · m?2 · s?1 (GBRTRLI101 and IMS101) and 100 μmol quanta · m?2 · s?1 (IMS101), but this effect was reduced in both strains growing at 220 μmol quanta · m?2 · s?1. Conversely, CO2‐fixation rates increased significantly (P < 0.05) in response to high pCO2 under mid‐ and high irradiances only. These data imply that the stimulatory effect of elevated pCO2 on CO2 fixation and N2 fixation by T. erythraeum is correlated with light. The ratio of gross:net N2 fixation was also correlated with light and trichome length in IMS101. Our study suggests that elevated pCO2 may have a strong positive effect on Trichodesmium gross N2 fixation in intermediate and bottom layers of the euphotic zone, but perhaps not in light‐saturated surface layers. Climate change models must consider the interactive effects of multiple environmental variables on phytoplankton and the biogeochemical cycles they mediate.  相似文献   

6.
The chl a specific absorption coefficients [a* (λ), m2·mg chl a ? 1] were examined in chemostat culture of the Prymnesiophyceae Isochrysis galbana (Parke) under a 12:12‐h light:dark cycle at low light (75 μmol photons·m ? 2·s ? 1) and high light (500 μmol photons· m ? 2·s ? 1) conditions. Other associated measurements such as pigment composition, cell density, and diameter as the measure of cell size were also made at the two light regimes every 2 h for 2 days to confirm the periodicity. A distinct diel variability was observed for the a* (λ) with maxima near dawn and minima near dusk. The magnitude of diel variation in a* (440) was 15% at low light and 22% at high light. Pronounced diel patterns were observed for cell size with minima near dawn and maxima near dusk. The magnitude of diel variation in cell size was 9.3% at low light and 21% at high light. The absorption efficiency factors [Q a (440)] were determined by reconstruction using intracellular concentrations of pigments and cell size. The Q a (440) also showed a distinct diel variability, with minima near dawn and maxima near dusk. The diel variation in a* (λ) and Q a (λ) was primarily caused by changes in cell size due to growth, although there was some influence from diel variations in the intracellular pigment concentrations. The results presented here indicated that diel variation in a* (λ) was an important component of the optical characterization of phytoplankton.  相似文献   

7.
The marine diatom Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal was cultured under three different light regimes: 100 μmol photon · m?2· s?1 on 12:12 h light : dark (L:D) cycles; 50 μmol photon · m?2· s?2 on 24:0 h L:D; and 100 μmol photon · m?2· s?1 on 24:0 h L:D. It was harvested during logarithmic and stationary phases for analysis of biochemical composition. Across the different light regimes, protein (as % of organic weight) was highest in cells during logarithmic phase, whereas carbohydrate and lipid were highest during stationary phase. Carbohydrate concentrations were most affected by the different light regimes; cells grown under 12:12 h L:D contained 37–44% of the carbohydrate of cells grown under 24:0 h L:D. Cells in logarithmic phase had high proportions of polar lipids (79 to 89% of total lipid) and low triacylglycerol (≤10% of total lipid). Cells in stationary phase contained less polar lipid (48 to 57% of total lipid) and more triacylglycerol (22 to 45% of total lipid). The fatty acid composition of logarithmic phase cells grown under 24:0 h L:D were similar, but the 100 μmol photon · m?2· s?1 (12:12 h L:D) cells at the same stage contained a higher proportion of polyunsaturated fatty acids (PUFAs) and a lower proportion of saturated and monounsaturated fatty acids due to different levels of 16:0, 16:1(n-7), 16:4(n-1), 18:4(n-3), and 20:5(n-3). With the onset of stationary phase, cells grown at 100 μmol photon · m?2· s?1 (both 12:12 and 24:0 h L:D) increased in proportions of saturated and monounsaturated fatty adds and decreased in PUFAs. Concentrations (% organic or dry weight) of 14:0, 16:0, 16:1(n-7), 20:5(n-3), and 22:6(n-3) increased in cells of all cultures during stationary phase. The amino acid compositions of cells were similar irrespective of harvest stage and light regime. For mariculture, the recommended light regime for culturing T. pseudonana will depend on the nutritional requirements of the animal to which the alga is fed. For rapidly growing bivalve mollusc larvae, stationary-phase cultures grown under a 24:0 h L:D regime may provide more energy by virtue of their higher percentage of carbohydrate and high proportions and concentrations of energy-rich saturated fatty acids.  相似文献   

8.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

9.
10.
Germlings were grown from Monostroma latissimum Wittr. reproductive cells on nylon ropes. Holdfast threads and some uniseriate filaments were observed to have penetrated the fibers of the dispersed ropes. The algal filaments were easily isolated and prepared for cultivation, in comparison to the methods of enzymatically isolated algal protoplasts. Under low light (60–100 μmol photons · m?2 · s?1), the algal filaments grew to form a filamentous mass. When cultivated under stronger light (300–600 μmol photons · m?2 · s?1), they grew to initially form tubular thalli and then, when cultivated under light intensities >700 μmol photons · m?2 · s?1, formed foliaceous thalli. Consequently, the filaments were homogenized into small sections and then sewed on the nylon rope for algal mass cultivation. Under high‐intensity natural light, they grew to form leafy thalli.  相似文献   

11.
The influence of fluctuating light on diversity and species number of a natural phytoplankton assemblage competing for nutrients was investigated for 48 days under semicontinuous culture conditions. Light conditions were either changed periodically from high (65 μmol photons·m?2·s?1) to low intensity (15 μmol photons·m?2·s?1) at intervals of 1, 3, 6, and 12 days or fixed at constant light conditions of intermediate intensity (40 μmol photons·m?2·s?1). Fluctuating light at intervals of 1–12 days significantly affected phytoplankton diversity. The development of phytoplankton communities differed in treatments with different light regimes. In treatments with long light intervals, species abundance oscillated with the light phases. Differences in the temporal development of phytoplankton communities resulted in hump‐shaped relations between the interval length of the light phases and both species number and diversity index and can be explained by the intermediate disturbance hypothesis. Fluctuating light tends to sustain phytoplankton diversity under nutrient limitation if the light regime changes in the order of several days. This indicates that temporal changes in weather regime are important in preventing competitive exclusion of phytoplankton species in nature.  相似文献   

12.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

13.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

14.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

15.
Motility of estuarine epipelic (mud‐inhabiting) diatoms is an important adaptation to living in biofilms present within fine sediments. Motility allows cells to migrate within the photic zone in response to a wide range of environmental stimuli. The motile responses of two species of benthic diatoms to photon fluence rates and spectral quality were investigated. Cultures of Navicula perminuta (Grunow) in van Heurck and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reimann both exhibited photoaccumulation at ~200 μmol · m?2 · s?1 and photodispersal from photon flux densities (PFDs) of ~15 μmol · m?2 · s?1. Photokinesis (changing cell speed) contributed toward photodispersal for both species, and red light (λ = 681–691 nm) was most effective at inducing this process. N. perminuta showed a phototactic (directional) response, with active movement in response to a light gradient. Although this response was exhibited in white light, these directional responses were only elicited by wavelengths from 430 to 510 nm. In contrast, C. closterium did not exhibit phototaxis under any light conditions used in this study. Motile benthic diatoms thus exhibit complex and sophisticated responses to light quantity and quality, involving combinations of photokinesis and phototaxis, which can contribute toward explaining the patterns of large‐scale cell movements observed in natural estuarine biofilms.  相似文献   

16.
We investigated copper (Cu) acquisition mechanisms and uptake kinetics of the marine diatoms Thalassiosira oceanica Hasle, an oceanic strain, and Thalassiosira pseudonana Hasle et Heimdal, a coastal strain, grown under replete and limiting iron (Fe) and Cu availabilities. The Cu‐uptake kinetics of these two diatoms followed classical Michaelis–Menten kinetics. Biphasic uptake kinetics as a function of Cu concentration were observed, suggesting the presence of both high‐ and low‐affinity Cu‐transport systems. The half‐saturation constants (Km) and the maximum Cu‐uptake rates (Vmax) of the high‐affinity Cu‐transport systems (~7–350 nM and 1.5–17 zmol · μm?2 · h?1, respectively) were significantly lower than those of the low‐affinity systems (>800 nM and 30–250 zmol · μm?2 · h?1, respectively). The two Cu‐transport systems were controlled differently by low Fe and/or Cu. The high‐affinity Cu‐transport system of both diatoms was down‐regulated under Fe limitation. Under optimal‐Fe and low‐Cu growth conditions, the Km of the high‐affinity transport system of T. oceanica was lower (7.3 nM) than that of T. pseudonana (373 nM), indicating that T. oceanica had a better ability to acquire Cu at subsaturating concentrations. When Fe was sufficient, the low‐affinity Cu‐transport system of T. oceanica saturated at 2,000 nM Cu, while that of T. pseudonana did not saturate, indicating different Cu‐transport regulation by these two diatoms. Using CuEDTA as a model organic complex, our results also suggest that diatoms might be able to access Cu bound within organic Cu complexes.  相似文献   

17.
18.
Crustose coralline algae occupied ~1%–2% (occasionally up to 7%) of the sea floor within their depth range of 15–50 m, and they were the dominant encrusting organisms and macroalgae beyond 20 m depth in Young Sound, NE Greenland. In the laboratory, oxygen microelectrodes were used to measure net photosynthesis (P) versus downwelling irradiance (Ed) and season for the two dominant corallines [Phymatolithon foecundum (Kjellman) Düwel et Wegeberg 1996 and Phymatolithon tenue (Rosenvinge) Düwel et Wegeberg 1996] representing> 90% of coralline cover. Differences in P‐Ed curves between the two species, the ice‐covered and open‐water seasons, or between specimens from 17 and 36 m depth were insignificant. The corallines were low light adapted, with compensation irradiances (Ec) averaging 0.7–1.8 μmol photons·m ? 2·s ? 1 and light adaptation (Ek) indices averaging 7–17 μmol photons·m ? 2·s ? 1. Slight photoinhibition was evident in most plants at irradiances up to 160 μmol photons·m ? 2·s ? 1. Photosynthetic capacity (Pm) was low, averaging 43–67 mmol O2·m ? 2 thallus·d ? 1 (~250–400 g C·m ? 2 thallus·yr ? 1). Dark respiration rates averaged ~5 mmol O2·m ? 2 thallus·d ? 1. In ice covered periods, Ed at 20 m depth averaged ~1 μmol photons·m ? 2·s ? 1, with daily maxima of 2–3 μmol photons·m ? 2·s ? 1. During the open water season, Ed at 20 m depth averaged ~7 μmol photons·m ? 2·s ? 1 with daily maxima of ~30 μmol photons·m ? 2·s ? 1. Significant net primary production of corallines was apparently limited to the 2–3 months with open water, and the small contribution of corallines to primary production seems due to low Pm values, low in situ irradiance, and their relatively low abundance in Young Sound.  相似文献   

19.
A population of Laminaria longicruris de la Pylaie was followed for a year at Bic Island, Quebec, Canada where nutrient levels in the seawater were elevated throughout the year. Tagged kelp were measured each month for growth and analyzed for alginic acid, laminaran, mannitol, carbon, nitrogen, and nitrate. Maximum growth (3.5 cm · d?1) was observed in June, and minimal growth (0.18 cm · d?1) from December to February, when ice cover limited light levels. No reserves of carbon or nitrate were formed. Laminaran levels remained below 2.7% dry weight while tissue nitrate did not exceed 0.75 μmol · g?1 dry weight. Total carbon produced per plant was 40 g C · yr?1. Nutrient availability enables the kelp to take advantage of summer light and temperature conditions to grow rapidly.  相似文献   

20.
Uptake and assimilation of nitrogen and phosphorus were studied in Olisthodiscus luteus Carter. A diel periodicity in nitrate reductase activity was observed in log and stationary phase cultures; there was a 10-fold difference in magnitude between maximum and minimum rates, but other cellular features such as chlorophyll a, carbon, nitrogen, C:N ratio (atoms) · cell?1 were less variable. Ks values (~2 μM) for uptake of nitrate-N and ammonium-N were observed. Phosphorus assimilated · cell?1· day?1 varied with declining external phosphorus concentrations; growth rates <0.5 divisions · day?1 were common at <0.5 μM PO4-P. Phosphate uptake rates (Ks= 1.0–1.98 μM) varied with culture age and showed multiphasic kinetic features. Alkaline phosphatase activity was not detected. Comparisons of the nutrient dynamics of O. luteus to other phytoplankton species and the ecological implications as related to the phytoplankton community of Narragansett Bay (Rhode Island) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号