首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ‘type’ culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov.  相似文献   

3.
The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium‐like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop‐shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.  相似文献   

4.
5.
A small dinoflagellate, ~13 μm in cell length, was isolated from Jinhae Bay, Korea. Light microscopy showed that it was similar to the kleptoplastidic dinoflagellate Gymnodinium gracilentum nom. inval. rDNA sequences were obtained and its anatomy and morphology described using light and scanning and transmission electron microscopy. Phylogenetic analyses indicated that it belonged to the family Kareniaceae. However, its large subunit (LSU) rDNA sequences were 5.2–9.5% different from those of the other five genera in the family, and its clade was clearly divergent from that of each genus. Its overall morphology was different from those of the other five genera in the family and from Gymnodinium. Unlike Gymnodinium, this dinoflagellate did not have a horseshoe‐shaped apical groove, nuclear envelope chambers, or a nuclear fibrous connective (NFC). It had an apical line of narrow amphiesmal vesicles and an elongated apical furrow crossing the apex. Cells were covered with polygonal amphiesmal vesicles arranged in 16 rows. Starved cells did not contain their own plastids, eyespots, pyrenoids, peridinin, or fucoxanthin. However, they could survive without added prey for approximately one month using chloroplasts from the cryptophyte prey Teleaulax amphioxeia, indicating kleptoplastidy. Because this taxon is genetically distinct at the generic rank from the other genera in Kareniaceae, it is placed in Shimiella gen. nov., and because G. gracilentum was invalid, the new bionomial S. gracilenta sp. nov. is proposed.  相似文献   

6.
The dinophyceaen genus Gymnodinium was established with the freshwater species G. fuscum as type. According to Thessen et al. (2012), there are 268 species, with the majority marine species. In recently published molecular phylogenies based on ribosomal DNA sequences, Gymnodinium is polyphyletic. Here, a new freshwater Gymnodinium species, G. plasticum, is described from Plastic Lake, Ontario, Canada. Two strains were established by incubating single cysts, and their morphology was examined with light microscopy and scanning electron microscopy. The cyst had a rounded epicyst and hypocyst with a wide cingulum and smooth surface. Vegetative cells were characterized by an elongated nucleus running vertically and a deep sulcal intrusion. The apical structure complex was horseshoe‐shaped and consisted of two pronounced ridges with a deep internal groove, encircling 80% of the apex. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences supports the monophyly of the Gymnodiniales sensu stricto clade but our results suggest that many Gymnodinium species might need reclassification. Gymnodinium plasticum is closest to Dissodinium pseudolunula in our phylogeny but distant from the type species G. fuscum, as are the other gymnodiniacean taxa.  相似文献   

7.
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1–5.8S–ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and a major accessory pigment peridinin, which are four key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3–10.9 μm long and 5.1–10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4–0.6 × cell length while in other known Gymnodinium species it is less than 0.3 × cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1–5.8S–ITS2, and LSU rDNA region differed by 1.5–3.8%, 6.0–17.4%, and 9.1–17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum, etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp.  相似文献   

8.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

9.
The symbiotic dinoflagellate Gymnoxanthella radiolariae T. Yuasa et T. Horiguchi gen. et sp. nov. isolated from polycystine radiolarians is described herein based on light, scanning and transmission electron microscopy as well as molecular phylogenetic analyses of SSU and LSU rDNA sequences. Motile cells of G. radiolariae were obtained in culture, and appeared to be unarmored. The cells were 9.1–11.4 μm long and 5.7–9.4 μm wide, and oval to elongate oval in the ventral view. They possessed an counterclockwise horseshoe‐shaped apical groove, a nuclear envelope with vesicular chambers, cingulum displacement with one cingulum width, and the nuclear fibrous connective; all of these are characteristics of Gymnodinium sensu stricto (Gymnodinium s.s.). Molecular phylogenetic analyses also indicated that G. radiolariae belongs to the clade of Gymnodinium s.s. However, in our molecular phylogenetic trees, G. radiolariae was distantly related to Gymnodinium fuscum, the type species of Gymnodinium. Based on the consistent morphological, genetic, and ecological divergence of our species with the other genera and species of Gymnodinium s.s., we considered it justified to erect a new, separate genus and species G. radiolariae gen. et sp. nov. As for the peridinioid symbiont of radiolarians, Brandtodinium has been erected as a new genus instead of Zooxanthella, but the name Zooxanthella is still valid. Brandtodinium is a junior synonym of Zooxanthella. Our results suggest that at least two dinoflagellate symbiont species, peridinioid Zooxanthella nutricula and gymnodinioid G. radiolariae, exist in radiolarians, and that they may have been mixed and reported as “Z. nutricula” since the 19th century.  相似文献   

10.
The dinoflagellate subfamily Diplopsalidoideae encompasses 11 genera whose plate patterns show a large diversity. In a recently published molecular phylogeny (Liu et al. 2015) some of these genera (e.g. Diplopsalis, Diplopelta) are polyphyletic, suggesting that further subdivision of these genera is needed. Here we established the cyst‐theca relationship of Diplopsalis caspica by incubating cysts collected from the East China Sea. Cells of D. caspica display a plate formula of Po, X, 3′, 1a, 6″, 3c+t, ?4s, 5″′, 1″″, characterized by a small, parallelogrammic anterior intercalary plate (1a) located in the middle of the dorsal part of the epitheca. The cysts are spherical and smooth‐walled with a theropylic archeopyle. In addition, we obtained four large subunit ribosomal DNA (LSU rDNA) sequences from the germinated motile cells by single‐cell polymerase chain reaction. Strains of D. caspica from the marine environment of the East China Sea differ at 0–2 positions of LSU rDNA sequences from that of lacustrine strains from NE China. In the molecular phylogeny, D. caspica was close to Lebouraia pusilla but distant from D. lenticula, the type species of Diplopsalis. Our results support the systematic importance of plate 1a, and therefore D. caspica was transferred to a new genus, Huia. The conservative LSU rDNA sequences in H. caspica suggest that the marine‐freshwater transition occurred recently.  相似文献   

11.
Four Gymnodinium species have previously been reported to produce microreticulate cysts. Worldwide, Gymnodinium catenatum strains are conservative in terms of larger subunit (LSU) rDNA and internal transcribed spacer region (ITS) sequences, but only limited information on the molecular sequences of other species is available. In the present study, we explored the diversity of Gymnodinium by incubating microreticulate cysts collected from the Yellow Sea off China. A total of 18 strains of Gymnodinium, from three species, were established. Two of these were identified as Gymnodinium catenatum and Gymnodinium microreticulatum, and the third was described as a new species, Gymnodinium inusitatum. Motile cells of G. inusitatum are similar to those of Gymnodinium trapeziforme, but they only share 82.52% similarity in LSU sequences. Cysts of G. inusitatum are polygonal in shape, with its microreticulate wall composed of approximately 14 concave sections. G. microreticulatum strains differ from each other at 69 positions (88.00% similarity) in terms of ITS sequences, whereas all G. catenatum strains share identical ITS sequences and belonged to the global populations. Phylogenetic analyses, based on LSU sequences, revealed that Gymnodinium species that produce microreticulate cysts are monophyletic. Nevertheless, the genus as a whole appears to be polyphyletic. Paralytic shellfish toxins (PSTs) were found in all G. catenatum strains tested (dominated by 11-hydroxysulfate benzoate analogs and N-sulfocarmaboyl analogs) but not in any of the G. microreticulatum and G. inusitatum strains. Our results support the premise that cyst morphology is taxonomically informative and is a potential feature for subdividing the genus Gymnodinium.  相似文献   

12.
A new species of the dinoflagellate genus Alexandrium, A. tamutum sp. nov., is described based on the results of morphological and phylogenetic studies carried out on strains isolated from two sites in the Mediterranean Sea: the Gulf of Trieste (northern Adriatic Sea) and the Gulf of Naples (central Tyrrhenian Sea). Vegetative cells were examined in LM and SEM, and resting cysts were obtained by crossing strains of opposite mating type. Alexandrium tamutum is a small‐sized species, resembling A. minutum in its small size, the rounded‐elliptical shape and the morphology of its cyst. The main diagnostic character of the new species is a relatively wide and large sixth precingular plate (6″), whereas that of A. minutum is much narrower and smaller. Contrary to A. minutum, A. tamutum strains did not produce paralytic shellfish poisoning toxins. Phylogenies inferred from the nuclear small subunit rDNA and the D1/D2 domains of the large subunit nuclear rDNA of five strains of A. tamutum and numerous strains of other Alexandrium species showed that A. tamutum strains clustered in a well‐supported clade, distinct from A. minutum.  相似文献   

13.
The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the Atlantic Chytriodinium sp. The first complete small subunit ribosomal DNA (SSU rDNA) of the Atlantic Chytriodinium sp. suggests that the specimens belong to an undescribed species. This is the first evidence of the split of the Gymnodinium clade: one for the parasitic forms of Chytriodiniaceae (Chytriodinium, Dissodinium), and other clade for the free‐living species.  相似文献   

14.
In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf‐cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf‐cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter‐specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum‐likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium.  相似文献   

15.
A new photosynthetic, sand‐dwelling marine dinoflagellate, Ailadinium reticulatum gen. et sp. nov., is described from the Jordanian coast in the Gulf of Aqaba, northern Red Sea, based on detailed morphological and molecular data. A. reticulatum is a large (53–61 μm long and 38–48 μm wide), dorsoventrally compressed species, with the epitheca smaller than the hypotheca. The theca of this new species is thick and peculiarly ornamented with round to polygonal depressions forming a foveate‐reticulate thecal surface structure. The Kofoidian thecal tabulation is APC (Po, cp), 4′, 2a, 6′′, 6c, 4s, 6′′′, 1p, 1′′′′ or alternatively it can be interpreted as APC, 4′, 2a, 6′′, 6c, 4s, 6′′′, 2′′′′. The plate pattern of A. reticulatum is noticeably different from described dinoflagellate genera. Phylogenetic analyses based on the SSU and LSU rDNA genes did not show any supported affinities with currently known thecate dinoflagellates.  相似文献   

16.
A small (7–11 μm long) dinoflagellate with thin amphiesmal plates was isolated into culture from a water sample collected in coastal waters of Yeosu, southern Korea, and examined by LM, SEM, and TEM, and molecular analyses. The hemispheric episome was smaller than the hyposome. The nucleus was oval and situated from the central to the episomal region of the cell. A large yellowish‐brown chloroplast was located at the end of the hyposome, and some small chloroplasts extended into the periphery of the episome. The dinoflagellate had a single elongated apical vesicle (EAV) and a type E eyespot, which are key characteristics of the family Suessiaceae. Unlike other genera in this family, it had two long furrow lines, one on the episome and the other on the hyposome, and encircling the dorsal, and lateral sides of the cell body. The pyrenoid lacked starch sheaths, but tubular invaginations into the pyrenoid matrix from the cytoplasm were observed. In the TEM, the dinoflagellate was observed to have cable‐like structures (CLSs) near the eyespot but so far not observed in other dinoflagellates. The SSU rDNA sequences examined were 1.2%–5.1% different from those of other genera in the family Suessiaceae, whereas the LSU (D1‐D3) rDNA sequences of this dinoflagellate were 15.1%–31.5% different. The dinoflagellate lacked a 51‐bp fragment in domain D2 of the LSU rDNA, but it had an ~100‐bp fragment in domain D2. This feature has been found previously only in the genera Leiocephalium and Polarella, two other genera of the Suessiaceae. The molecular phylogeny and sequence divergence based on SSU, and LSU rDNA indicate that the Korean dinoflagellate holds a taxonomically distinctive position and we consider it to be a new species in a new genus in the family Suessiaceae, named Yihiella yeosuensis gen. et sp. nov.  相似文献   

17.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

18.
Scrippsiella hangoei (Schiller) Larsen is a peridinoid dinoflagellate that grows during winter and spring in the Baltic Sea. In culture this species formed round, smooth cysts when strains were mixed, indicating heterothallic sexuality and hypnozygote production. However, cysts of the same morphology were also formed in clonal strains exposed to slightly elevated temperature. To better understand the role of cysts in the life cycle of S. hangoei, cyst formation and dormancy were examined in culture experiments and the cellular DNA content of flagellate cells and cysts was compared in clonal and mixed strains using flow cytometry. S. hangoei exhibited a high rate of cyst formation in culture. Cysts produced in both clonal and mixed strain cultures were thick‐walled and underwent a dormancy period of 4 months before germinating. The S. hangoei flagellate cell population DNA distributions consisted of 1C, intermediate, and 2C DNA, indicative of respective eukaryotic cell cycle phases G1, S, and G2M. The majority (>95%) of cysts had a measured DNA content equivalent to the lower 1C DNA value, indicating a haploid nuclear phase and an asexual mode of cyst formation. A small percentage (<5%) of cysts produced in the mixed strain culture had 2C DNA, and thus could have been diploid zygotes. These findings represent the first measurements of dinoflagellate resting cyst DNA content, and provide the first quantitative evidence for dinoflagellate asexual resting cysts. Asexual resting cysts may be a more common feature of dinoflagellate life cycles than previously thought.  相似文献   

19.
A new species of the dinoflagellate genus Gymnodinium Stein, previously considered a member of Katodinium Fott, is characterized from two marine benthic habitats in tropical northern Australia. Gymnodinium dorsalisulcum comb. nov. was found to be very abundant at times, and in culture produced large quantities of mucus. We analyzed two regions of ribosomal DNA from this species (partial large subunit and complete small subunit sequences), using Bayesian analysis and phylogenetic models appropriate to alignments of ribosomal RNA genes. We compared it to eight species of the ‘true’Gymnodinium clade and to other dinoflagellates. The results show that it is a member of the Gymnodinium clade, and is closely related to Gymnodinium impudicum and G. chlorophorum. Katodinium was originally defined as having cells with an epitheca that is much larger than the hypotheca. However, this character is clearly inadequate, and the genus requires a re‐investigation to determine the apomorphies of the type species.  相似文献   

20.
Cellular morphology and the phylogenetic position of a new unarmored photosynthetic dinoflagellate Cochlodinium fulvescens Iwataki, Kawami et Matsuoka sp. nov. were examined by light microscopy and molecular phylogenetic analyses based on partial large subunit ribosomal DNA (LSU rDNA) and small subunit ribosomal DNA (SSU rDNA) sequences. The cells of C. fulvescens closely resemble C. polykrikoides, one of the most harmful red tide forming dinoflagellates, due to it possessing a cingulum encircling the cell approximately twice, a spherical nucleus positioned in the anterior part of the cell and an eyespot‐like orange pigmented body located in the dorsal side of the epicone, as well as formation of cell‐chains. However, this species is clearly distinguished from C. polykrikoides based on several morphological characteristics, namely, cell size, shape of chloroplasts and the position of narrow sulcus situated in the cell surface. The sulcus of C. fulvescens is located at the intermediate position of the cingulum in the dorsal side, whereas that of C. polykrikoides is situated immediately beneath the cingulum. LSU rDNA phylogenies indicated that C. fulvescens is clearly distinct from, but closely related to C. polykrikoides among dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号