首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
  相似文献   

4.
    
The process of N2 fixation in the filamentous cyanobacterium Anabaena sp. PCC 7120 is known to occur in terminally differentiated cells called heterocysts. This study is concerned with a morphological and immunocytochemical analysis of the developing heterocysts. The heterocysts continue a developmental process after synthesis of the specialized cell wall and the formation of the proheterocyst. The initial stages were described by Wilcox et al. (1973) and designated stages 1 through 7, with stages 5–7 associated with the maturing heterocyst. We now designate a stage 8 as the postmaturation stage, based on physiological and ultrastructural evidence. Immunocytochemistry to detect the nitrogenase protein NifH and the nonribosomally synthesized polypeptide cyanophycin demonstrated a complementary accumulation of these polypeptides. Accumulation of the nitrogenase protein was greatest at stages 5 and 6 and then declined precipitously. Cyanophycin was more prevalent after late stage 6 and was primarily associated with the polar nodule (polar plug) and the neck connecting the heterocyst with the adjoining vegetative cell. We suggest that the cyanophycin-containing polar plug is a key intermediate in the storage of fixed nitrogen in the heterocyst, a result consistent with the suggestion first made by Carr (1988) that cyanophycin exists as a dynamic reservoir of fixed nitrogen within the heterocysts.  相似文献   

5.
    
Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real‐time PCR (RT‐PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT‐PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75–2.5 × 106 plasmid DNA copies per cell. RT‐PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry‐based results are not always proportional to plasmid cellular uptake determined by RT‐PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
Quantitative PCR is becoming widespread for diagnosing and monitoring post‐transplantation diseases associated with EBV and CMV. These assays need to be standardized to manage patients in different facilities. Five independent laboratories in Japan compared home‐brew assays and a prototype assay system to establish a standard quantitative procedure for measuring EBV and CMV. Reference standards and a total of 816 (642 EBV and 174 CMV) whole blood samples from post‐transplantation recipients were used for this multicenter evaluation. The prototype reference standard for EBV was compared to a panel of samples, with a theoretical expected value made using EBV‐positive cells containing two virus genome copies per cell. The mean ratio of the reference standard at each site to the standard of the prototype assay was ≤4.15 for EBV among three different sites and ≤3.0 for CMV between two laboratories. The mean of the theoretical expected number of the EBV genome: prototype reference was close to 1.0. The correlation coefficients between the viral copy numbers determined using the prototype assay and those using each home‐brew assay were high (EBV, 0.73–0.83, median = 0.78; CMV, 0.54–0.60, median = 0.57). The dynamics of the EBV and CMV loads in transplant recipients were similar between the assay types. There was an inter‐laboratory difference among the quantification results, indicating that a unified protocol and kit are favorable for standardizing the quantification of EBV and CMV. Such standardization will help to standardize the diagnosis and monitoring of diseases associated with EBV and CMV.  相似文献   

7.
1. The importance of various forms of nitrogen to the nitrogen supply of phytoplankton has been investigated in the mesotrophic eastern and eutrophic western basin of Lake Balaton.
2. Uptake rates of ammonium, urea, nitrate and carbon were measured simultaneously. The uptake rates were determined using N and C methodologies, and N2‐fixation was measured using the acetylene‐reduction method. The light dependence of uptake was described with an exponential saturation equation and used to calculate surface‐related (areal) daily uptake.
3. The contribution of ammonium, urea and nitrate to the daily nitrogen supply of phytoplankton varied between 11 and 80%, 17 and 73% and 1 and 15%, respectively. N2‐fixation was negligible in the eastern basin and varied between 5 and 30% in the western region of the lake. The annual external nitrogen load was only 10% of that utilized by algae.
4. The predominant process supplying nitrogen to the phytoplankton in the lake is the rapid recycling of ammonium and urea in the water column. The importance of the internal nutrient loading is emphasized.  相似文献   

8.
The suppressive ability of several strains of cyclic lipopeptide‐producing Bacillus rhizobacteria to grey leaf spot disease caused by Magnaporthe oryzae has been documented previously; however, the underlying mechanism(s) involved in the induced systemic resistance (ISR) activity in perennial ryegrass (Lolium perenne L.) remains unknown. Root‐drench application of solid‐phase extraction (SPE)‐enriched surfactin and live cells of mutant Bacillus amyloliquefaciens strain FZB42‐AK3 (produces surfactin, but not bacillomycin D and fengycin) significantly reduced disease incidence and severity on perennial ryegrass. The application of the treatments revealed a pronounced multilayered ISR defence response activation via timely and enhanced accumulation of hydrogen peroxide (H2O2), elevated cell wall/apoplastic peroxidase activity, and deposition of callose and phenolic/polyphenolic compounds underneath the fungal appressoria in naïve leaves, which was significantly more intense in treated plants than in mock‐treated controls. Moreover, a hypersensitive response (HR)‐type reaction and enhanced expression of LpPrx (Prx, peroxidase), LpOXO4 (OXO, oxalate oxidase), LpPAL (PAL, phenylalanine ammonia lyase), LpLOXa (LOX, lipoxygenase), LpTHb (putative defensin) and LpDEFa (DEFa, putative defensin) in perennial ryegrass were associated with SPE‐enriched surfactin and live AK3 cell treatments, acting as a second layer of defence when pre‐invasive defence responses failed. The results indicate that ISR activity following surfactin perception may sensitize H2O2‐mediated defence responses, thereby providing perennial ryegrass with enhanced protection against M. oryzae.  相似文献   

9.
    
  相似文献   

10.
11.
12.
    
Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of energy and material. Understanding how biofilms respond to warming is thus critical for predicting responses of coupled elemental cycles in freshwater systems. We developed biofilm communities in experimental streamside channels along a gradient of mean water temperatures (7.5–23.6 °C), while closely maintaining natural diel and seasonal temperature variation with a common water and propagule source. Both structural (i.e. biomass, stoichiometry, assemblage structure) and functional (i.e. metabolism, N2‐fixation, nutrient uptake) attributes of biofilms were measured on multiple dates to link changes in carbon flow explicitly to the dynamics of nitrogen and phosphorus. Temperature had strong positive effects on biofilm biomass (2.8‐ to 24‐fold variation) and net ecosystem productivity (44‐ to 317‐fold variation), despite extremely low concentrations of limiting dissolved nitrogen. Temperature had surprisingly minimal effects on biofilm stoichiometry: carbon:nitrogen (C:N) ratios were temperature‐invariant, while carbon:phosphorus (C:P) ratios declined slightly with increasing temperature. Biofilm communities were dominated by cyanobacteria at all temperatures (>91% of total biovolume) and N2‐fixation rates increased up to 120‐fold between the coldest and warmest treatments. Although ammonium‐N uptake increased with temperature (2.8‐ to 6.8‐fold variation), the much higher N2‐fixation rates supplied the majority of N to the ecosystem at higher temperatures. Our results demonstrate that temperature can alter how carbon is cycled and coupled to nitrogen and phosphorus. The uncoupling of C fixation from dissolved inorganic nitrogen supply produced large unexpected changes in biofilm development, elemental cycling, and likely downstream exports of nutrients and organic matter.  相似文献   

13.
14.
    
Symbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H+ alongside N2, and the evolving H2 allows a continuous and non‐invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set‐up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features. A system was developed that allows the air‐proof separation of a root/nodule and a shoot compartment. H2 evolution in the root/nodule compartment can be monitored continuously. Nutrient solution composition, temperature, CO2 concentration and humidity around the shoots can concomitantly be maintained and manipulated. Medicago truncatula plants showed vigorous growth in the system when relying on nitrogen fixation. The set‐up was able to provide specific insights into nitrogen fixation. For example, nodule activity depended on the temperature in their surroundings, but not on temperature or light around shoots. Increased temperature around the nodules was able to induce higher nodule activity in darkness versus light around shoots for a period of as long as 8 h. Conditions that affected the N demand of the shoots (ammonium application, Mg or P depletion, super numeric nodules) induced consistent and complex daily rhythms in nodule activity. It was shown that long‐term continuous measurements of nodule activity could be useful for revealing special features in mutants and could be of importance when synchronizing nodule harvests for complex analysis of their metabolic status.  相似文献   

15.
16.
  总被引:1,自引:0,他引:1  
  相似文献   

17.
    
  1. The nitrogen (N) cycle is highly dependent on microbial processes. Distribution of these communities is one of the most important factors in the variation of the N cycling in warm‐monomictic lakes. However, the effects of the alternation of water stratification and mixing periods on the ecology of microbial communities involved in these processes are rarely studied in this type of aquatic ecosystem.
  2. We explored vertical and seasonal patterns of picoplankton and the genetic potential for ammonium oxidation (amoA gene for bacteria and archaea), denitrification (nirS and nirK), anammox (hzsA), and DNRA (nrfA) and their relationships with the main limnological variables in Lake Alchichica (Central Mexican Plateau) to provide insight into the distribution and importance of these planktonic communities in warm‐monomictic tropical lakes. Ten depths were sampled during late stratification (November 2015) and mixing (February 2016) periods, covering the epilimnion, metalimnion (oxycline), and hypolimnion layers in the first case.
  3. We showed that temperature and oxygen stratification shaped the distribution of picoplankton and functional N genes in this lake. These communities also varied in relation to nutrient availability and underwent temporal changes throughout the water column. The amoA genes, along with autotrophic picoplankton, were more abundant during the stratification, indicating that nitrification could be potentially more important during this period, mainly at the oxycline layer. Denitrifying genes showed strong variations during the stratification period, with highest gene copy numbers at the oxycline and hypolimnion layers. Anoxic conditions were characterised by a relative increase in the abundance of the nrfA gene with depth, which was positively correlated with NH4+ concentration. On the other hand, the hzsA gene was not detected in any sample.
  4. Our findings highlight the importance of thermal stratification as one of the main factors influencing the genetic potential for N transformations within the water column in warm‐monomictic tropical lakes.
  相似文献   

18.
19.
    
Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with 13C–15N‐enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO3–N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.  相似文献   

20.
    
Benzene is an established haematotoxic and genotoxic carcinogen. DNA methyltransferase inhibitor, 5-aza (5-aza-2'-eoxycytidine) and histone deacetylase inhibitor, TSA (trichostatin A) are two kinds of key epigenetic modification reagents. Although apoptosis has been considered as the key cytotoxicity mechanism, the effects of these epigenetic reagents on benzene-induced apoptosis have not been reported. In this study, BMCs (bone marrow cells) from rats were incubated with benzene and then with either 5-aza, TSA alone or the combination of the two drugs. Apoptosis and mRNA expression were detected by annexin V/PI (propidium iodide) staining assay and real-time PCR, respectively. Results showed that benzene caused cell apoptosis accompanied with bcl-2 mRNA decrease, caspase-3 and bax mRNA increase. Moreover, benzene-induced apoptosis and the decrease of bcl-2 mRNA were both reversed by both 5-aza and TSA, but the role of TSA was significantly larger than 5-aza. More interestingly, these increases in benzene-induced caspase-3 and bax mRNA expression were obviously suppressed by 5-aza but not by TSA. In conclusion, 5-aza inhibited benzene-induced apoptosis through down-regulating of caspase-3 and bax and up-regulating bcl-2 mRNA expression, whereas the effect of TSA on apoptosis dominatingly affected bcl-2 mRNA expression, and 5-aza together with TSA had no synergic effect on benzene-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号