首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific‐glucose‐uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters.  相似文献   

2.
Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150mg l(-1) Fe2+ +Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H-1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 micromol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses.  相似文献   

3.
Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.  相似文献   

4.
    
Resource competition theory is a conceptual framework that provides mechanistic insights into competition and community assembly of species with different resource requirements. However, there has been little exploration of how resource requirements depend on other environmental factors, including temperature. Changes in resource requirements as influenced by environmental temperature would imply that climate warming can alter the outcomes of competition and community assembly. We experimentally demonstrate that environmental temperature alters the minimum light and nitrogen requirements – as well as other growth parameters – of six widespread phytoplankton species from distinct taxonomic groups. We found that species require the most nitrogen at the highest temperatures while light requirements tend to be lowest at intermediate temperatures, although there are substantial interspecific differences in the exact shape of this relationship. We also experimentally parameterize two competition models, which we use to illustrate how temperature, through its effects on species’ traits, alters competitive hierarchies in multispecies assemblages, determining community dynamics. Developing a mechanistic understanding of how temperature influences the ability to compete for limiting resources is a critical step towards improving forecasts of community dynamics under climate warming.  相似文献   

5.
During competition for phosphate in continuous cultures, Cosmarium subcostatum Nord. routinely displaced Staurastrum paradoxum Meyer. The rate of displacement was independent of cell density between 100 and 6000 cells mL?1. This suggests that competition for nutrients is important over a wide range of naturally occurring cell densities. C. subcostatum had higher saturated rates of phosphate uptake but also higher half saturation values for uptake. As a result, the two desmids were similarly able to take up phosphate at low concentrations. The competitive advantage of C. subcostatum lay in its greater yield per unit of phosphorus. Growth of the two algae in shared medium in a dual-chamber chemostat had no effect on uptake or yield characteristics.  相似文献   

6.
Abstract A comparative study has been undertaken to determine the efficiency of methods for the enrichment and isolation of autotrophic nitrifying bacteria from soils and estuarine and marine sediments. Chemostat enrichments proved to be the most efficient means of isolating autotrophic NH+4 oxidisers whereas NO2 oxidising bacteria were never successfully enriched by this method. In contrast, gel enrichment and traditional batch culture enrichments of nitrifying bacteria were comparatively time consuming procedures and the degree of enrichment obtained for NH+4 oxidising bacteria never approached that obtained with continuous culture enrichments. Gel enrichments, however, because they have continuous physicochemical gradients provide qualitative advantages in that morphologically distinct types of nitrifying bacteria can be isolated from the same gel.  相似文献   

7.
    
We study a chemostat model in which two microbial species grow on a single resource. We show that species coexistence is possible when the species which would normally win the exclusive competition aggregates in flocs. Our mathematical analysis exploits the fact that flocculation is fast compared to biological growth, a common hypothesis in floc models. A numerical study shows the validity of this approach in a large parameter range. We indicate how our model yields a mechanistic justification for the so-called density-dependent growth.  相似文献   

8.
Ostrofsky  M. L.  Weigel  D. E.  Hasselback  C. K.  Karle  P. A. 《Hydrobiologia》1998,382(1-3):87-96
Both winter photosynthesis and the release of extracellular DOC are commonly ignored in stream production studies. We examined these contributions in a second-order stream under a completely closed deciduous canopy. We estimate that in Sandy Run approximately 26% of the annual autochthonous particulate carbon is produced between December and March. Measured winter rates of photosynthesis were not significantly different than summertime rates. Contrary to implicit assumptions often made about stream primary productivity, winter production was as important as summer production. Highest rates of carbon assimilation, however, were measured in the spring and fall, and were significantly correlated with standing crops of stream algae as measured by chlorophyll concentration. The recovery of released DOC from stream algae indicated that this contribution was equivalent to 5% of the particulate contribution. Rates of DOC production were significantly correlated with rates of particulate production. We estimate that had winter photosynthesis and extracellular DOC production been ignored in Sandy Run, annual productivity would have been underestimated by about a third. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
phosphorus-limited chemostats were used to study the effect of degree of phosphorus deficiency on several aspects of the composition and metabolism of Anabaena variabilis Kütz. and Scenedesmus quadricauda (Turp.) Bréb. The changes as a function of the dilution rate could be placed into 3 patterns. Most aspects of the composition showed it progressive change with dilution rate. The carbohydrate content generally increased while cellular P and nitrogen, protein, nucleic acid and chlorophyll contents generally decreased over the entire range of increasing deficiency studied. The changes in metabolism fell into a second pattern, showing great sensitivity to the onset of P deficiency. The ability to take up phosphate and the alkaline phosphatase activity increased most markedly with increasing deficiency at the higher dilution rates. The third pattern was confined to the, lipid content of S. quadricauda, which increased with deficiency only at the lowest dilution rates.  相似文献   

10.
    
In this work the question was addressed if in nitrite-oxidizing activated sludge systems the environmental competition between Nitrobacter spp. and Nitrospira spp., which only recently has been discovered to play a role in these systems, is affected by the nitrite concentrations. Two parallel chemostats were inoculated with nitrifying-activated sludge containing Nitrospira and operated under identical conditions. After addition of Nitrobacter to both chemostats, the nitrite concentration in the influent of one of the chemostats was increased such that nitrite peaks in the bulk liquid of this reactor were detected. The other chemostat served as control reactor, which always had a constant nitrite influent concentration. The relative cellular area (RCA) of Nitrospira and Nitrobacter was determined by quantitative fluorescence in situ hybridization (FISH). The nitrite perturbation stimulated the growth of Nitrobacter while in the undisturbed control chemostat Nitrospira dominated. Overall, the results of this experimental study support the hypothesis that Nitrobacter is a superior competitor when resources are abundant, while Nitrospira thrive under conditions of resource scarcity. Interestingly, the dominance of Nitrobacter over Nitrospira, caused by the elevated nitrite concentrations, could not be reverted by lowering the available nitrite concentration to the original level. One possible explanation for this result is that when Nitrobacter is present at a certain cell density it is able to inhibit the growth of Nitrospira. An alternative explanation would be that the length of the experimental period was not long enough to observe an increase of the Nitrospira population.  相似文献   

11.
12.
    
Continuous culture techniques are used to study long-term population interactions between Plectonema boryanum Gomont, a filamentous bluegreen alga, and the LPP-viruses which infect it. After LPP-I (virulent cyanophage) infection of sensitive algae, 3 oscillations occur in cell density with concomitant oscillations in virus titer before final stabilization of both algal and viral concentrations. After LPP-ID and LPP-2 (temperate viruses) infection, oscillation in cell density occurred with burst of virus particles. Resistant algae always repopulated the chemostat; lysogeny was not established. The interaction between Plectonema that was resistant to virus infection and the 3 LPP-cyanophages resulted in rapid elimination of the viruses from the chemostat in the effluent. When lysogenic P. boryanum was tested, a law population of virus was present in the chemostat throughout the incubation period indicative of spontancous induction. Clones of lysogenic algae were isolated.  相似文献   

13.
    
Aims Release of carbon from plant roots initiates a chain of reactions involving the soil microbial community and microbial predators, eventually leading to nutrient enrichment, a process known as the 'microbial loop'. However, root exudation has also been shown to stimulate nutrient immobilization, thereby reducing plant growth. Both mechanisms depend on carbon exudation, but generate two opposite soil nutrient dynamics. We suggest here that this difference might arise from temporal variation in soil carbon inputs.Methods We examined how continuous and pulsed carbon inputs affect the performance of wheat (Triticum aestivum), a fast-growing annual, while competing with sage (Salvia officinalis), a slow-growing perennial. We manipulated the temporal mode of soil carbon inputs under different soil organic matter (SOM) and nitrogen availabilities. Carbon treatment included the following two carbon input modes: (i) Continuous: a daily release of minute amounts of glucose, and (ii) Pulsed: once every 3 days, a short release of high amounts of glucose. The two carbon input modes differed only in the temporal dynamic of glucose, but not in total amount of glucose added. We predicted that pulsed carbon inputs should result in nutrient enrichment, creating favorable conditions for the wheat plants.Important findings Carbon addition caused a reduction in the sage total biomass, while increasing the total wheat biomass. In SOM-poor soil without nitrogen and in SOM-rich soil with nitrogen, wheat root allocation was higher under continuous than under pulsed carbon input. Such an allocation shift is a common response of plants to reduced nutrient availability. We thus suggest that the continuous carbon supply stimulated the proliferation of soil microorganisms, which in turn competed with the plants over available soil nutrients. The fact that bacterial abundance was at its peak under this carbon input mode support this assertion. Multivariate analyses indicated that besides the above described changes in plant biomasses and bacterial abundances, carbon supply led to an accumulation of organic matter, reduction in NO 3 levels and increased levels of NH 4 in the soil. The overall difference between the two carbon input modes resulted primarily from the lower total wheat biomass, and lower levels of NO 3 and soil PH characterizing pots submitted to carbon pulses, compared to those subjected to continuous carbon supply. Carbon supply, in general, and carbon input mode, in particular, can lead to belowground chain reactions cascading up to affect plant performance.  相似文献   

14.
喻晓  张修峰  刘正文 《生态科学》2012,31(3):301-305
底栖藻类和浮游藻类之间的竞争关系对浅水生态系统的结构、功能具有重要的影响,双壳类可通过滤食控制浮游藻类,从而改变底栖藻类与浮游藻类之间的竞争结果。论文通过比较放养背角无齿蚌(Anodonta woodiana)(蚌处理组)与不放养背角无齿蚌(对照组)系统中底栖藻类、浮游藻类的生物量和优势种等的变化,研究了滤食性双壳类对底栖藻类和浮游藻类间竞争的影响。结果表明,背角无齿蚌可显著降低浮游藻类生物量,提高水体透明度和沉积物表面光照条件,从而显著提高底栖藻类的生物量;背角无齿蚌也改变了浮游藻类的优势种,使优势种由蓝藻转变成硅藻。因此,滤食性双壳类有利于促进浅水生态系统从混水态向清水态转变,本研究结果对富营养化浅水湖泊修复与管理具有一定的参考意义。  相似文献   

15.
We characterized seasonal patterns of phytoplankton and bacterial biomass, production and nutrient limitation along a lateral transect within a large river impoundment. We hypothesized that the balance between autotrophy and heterotrophy was related to depth gradients and differences in water residence time (WRT) between the main channel and an embayment. Heterotrophy predominated in the main channel with bacterial production exceeding phytoplankton production by a factor of 3.3. In the embayment, autotrophy and heterotrophy were more closely balanced (ratios of bacterial to phytoplankton production ca. 0.8). Phytoplankton and bacterial biomass were positively correlated with WRT. However, WRT accounted for less than 50% of variation and its predictive power was comparable to models based on nutrient or DOC concentrations. Bacterial production was correlated with phytoplankton biomass and production suggesting that algal-derived C may be an important substrate for bacterial growth even in systems dominated by allochthonous inputs. Our experimental data suggest that nutrient limitation may be important particularly in embayments where biomass was somewhat higher and substrate concentrations were lower. Nutrient limitation in the main channel was rare whereas N and P amendments consistently stimulated phytoplankton growth rates in the embayment. Bacterial cell densities did not respond to nitrogen or phosphorus additions in either the main channel or embayment.  相似文献   

16.
Thispaperstudiestheglobaldynamicsofcompetitioninchemostatinwhichtwopopulationsofmicrooganismscompeteexploitativelyforasingle,essential,nonreproducing,growth-limitingsubstrateandthereisadirectinterferencebetweencompetitors.Inordertounderstandthedifferencesintheeffectsofintraspecificandinterspecificinterference,thebothcasesareconsideredrespectively.Keywords:##4Populationdynamicsecology;;chemostat;;competition;;interference;;interspecific;;intraspecific;;principalofcompetitiveexclusion  相似文献   

17.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   

18.
    
Identifying interactions among organisms is central to the study of ecology. The Angle Frequency Method (AFM) allows the detection of interactions in time series data. The AFM takes pairwise data plotted in phase diagrams and identifies signals (vector directions in phase diagrams) associated with particular interactions. Using microbial experimental systems consisting of predators (bacteriophage T4) and prey/competitors (strains of Escherichia coli), we demonstrate that the AFM can identify predator–prey and competitive interactions. The level of control afforded by such microbial experimental systems allows direct tests of the utility and robustness of the AFM. Signals of predation were distinct from signals of competition, with the strongest signal of predation corresponding to the collapse of the predator population at low prey densities. Signals of competition reflected the difference in competitive strength between the superior and the inferior competitors. In addition, the effects of invasion and resource enrichment on interactions in the laboratory communities were detectable using the AFM. Our analyses support results from model simulations and analyses of lake time series by identifying similar sets of signals characteristic of predation and competition, and demonstrate that the AFM is an effective tool in rigorous studies of time series.  相似文献   

19.
柄杆菌对固氮蓝藻生物量及色素的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
柄杆菌对固氮蓝藻生物量和色素的影响研究结果表明:多态柄杆菌(Caulobacter polymorphus)017-41或新月柄杆菌(Caulobacter creseentus)CB_2的活菌、死菌及破碎细胞悬液分别与鱼腥藻(Anabaena)、念珠藻(Nostoc)不同藻珠混合培养时,试验组生长量均优于对照组;对衰老黄化的藻培养物的生长刺激作用尤为显著;试验组藻培养物的藻蓝或藻红素含量亦明显高于对照组。其作用机理尚待进一步阐明。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号