首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Carbon stocks and organic matter composition in bulk soils and particle size fractions of Ah horizons from Luvisols, Leptosols and Phaeozems under European beech (Fagus silvatica L.) forest were investigated by elemental analysis, solid state 13C nuclear magnetic resonance (13C CPMAS NMR) spectroscopy and lignin analysis (CuO-oxidation). Radiocarbon age was used as an indicator for C turnover. The SOM of bulk soils and particle size fractions is dominated by O/N-alkyl C and alkyl C. Compared to sand and silt fractions, clay fractions had lower C/N ratios and 14C abundances. Aryl C and more specifically phenolic components (O-aryl C) decreased from sand to clay fractions. The concomitant decrease of lignin, determined by CuO oxidation, suggests that a major proportion of O-aryl C can be attributed to lignin. Positive nonlinear relations between the O-aryl C and the C/N ratio reveal the trend of decreasing O-aryl C proportions with increasing decomposition. Although lignin is believed to be highly recalcitrant, only low amounts of lignin are found in the stable clay fractions. In contrast to O-aryl C, the O/N-alkyl C contribution decreased from sand to silt fractions, but increased again in the clay fractions, whereas alkyl C contents exhibited lowest values in the sand fractions. These results are indicative of stabilisation processes operating specifically on polysaccharides and alkyl C, but not on aryl C, through association with the clay fraction.  相似文献   

2.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of the leachate of the noxious weed Pluchea lanceolata was explored using mustard and tomato seedling growth bioassays of four soil types (sandy loam, clay loam, silty loam, and sand). The objectives of the present study were: 1) to determine how soil chemistry changes after addition of leachate and leaves of the weed; 2) to determine what level of input to the soil does not cause significant differences from those of weed-associated soils under field conditions; and 3) to determine whether soil texture affects bioassay results. Leaf leachates of the weed were added to four soil types in different dilutions, and soils were analyzed for pH, electrical conductivity, organic matter, Cl, PO4, exchangeable Cu+ +, Zn+ +, Na+, K+, Mg+ +, and Ca+ +, and total phenolics. These results indicated that the leachates of the weed altered chemical characteristics of each soil type. Concentration of phenolics in treatment of each soil type was dilution-dependent. Leachates were more inhibitory on sandy loam and clay loam than on silty loam and sand. Present study indicated that in allelopathic bioassays, amended soils that are nonsignificantly different from weed-associated soils should be taken. Further, present investigations confirmed the significance of good control soil with nonsignificantly altered chemical characteristics from those of natural soils, as well as soil texture to establish allelopathy of ecological relevance.  相似文献   

4.
Abstract —Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular‐based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white‐sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty‐six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white‐sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white‐sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.  相似文献   

5.
Texture is an important influence on organic matter (SOM) dynamics in upland soils but little is known about its role in riverine soils. We hypothesized that texture might be especially important to SOM accumulation in young alluvial soils. We combined the soil component of the CENTURY ecosystem model, which uses sand, silt, and clay concentration as primary variables, with a simple simulation model of fluvial deposition, and forest production to predict changes in soil carbon (C) and nitrogen (N) during primary succession on floodplains and terraces of the Queets River, Washington. Simulated soil C accumulated to a plateau of about 4000 g m−2 at 110 years, closely matching observed patterns in an empirical chronosequence. Although direct fluvial OM deposition had only a small and short-lived influence on soil C, fluvial silt and clay deposition were an important influence on equilibrium C. The model underestimated soil N by about 35%, which appears to be due to failure of the model to account for N enrichment of an OM pool after its initial formation. These results suggest that basic influences on SOM retention in these young soils are not functionally different than those that apply to upland soils, but occur within highly dynamic physical contexts. Overbank deposition of silt and clay establishes a basic capacity for SOM retention. SOM, in turn, facilitates N retention. In this way, silt and clay are instrumental in propagating N forward from N-fixing red alder (Alnus rubra) stands to mature conifer forests that are frequently N-limited.  相似文献   

6.
1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south‐eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north‐central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow‐flowing ‘chains of ponds’ with a clay streambed. To correct for potential upstream‐downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay‐bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand‐slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up‐ and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip‐Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ‘expected’ results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus‐rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand‐affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand‐slugged streams. 5. Differences between streams within categories (particularly between sand‐slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand‐affected streams even over relatively small (approximately <10 km) spatial scales.  相似文献   

7.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

8.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

9.
The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration.  相似文献   

10.
The characteristics of Cs sorption behavior in two soils (soil 1 and soil 2) with nearly the same clay content and exhangeable K concentration, but with different clay mineralogy, were studied by the quantification of the distribution coefficient (kd). It was observed that as the initial Cs concentration increased from 4 to 50 mg L?1, the kd values decreased in both soils, suggesting a progressive saturation of Cs available sorption sites. However, the presence of expansible 2:1 phyllosilicates minerals in the clay fraction of soil 2 maintained a high Cs sorption ability for this soil, even at high Cs concentrations. The experimental data were also fitted to the Freundlich isotherm and the results showed that parameters of the Freundlich equation could be used to estimate the degree of Cs sorption and the nature of the available sorption sites. For the studied soils, the kf and the kd values followed a similar trend and the n Freundlich constant values provided a reliable indicator for the soils’ clay mineralogy. The removal of the sand fraction enhanced Cs sorption in both soils and the absence of sorbed Cs ions on the quartz minerals, as observed by the SEM analysis, additionally supported the effect of particle-size fraction on Cs sorption.  相似文献   

11.
The sorption and desorption of volatile compounds from soils and clays exhibit a wide range of kinetics. While much of the sorptive interaction is very rapid, a certain fraction of volatile compounds that enter soil and clays are only slowly desorbed. It is generally believed that the formation of this recalcitrant or slowly desorbing fraction of volatile organic compounds (VOCs) in soils is due to the diffusion of compounds to poorly accessible sorption sites. However, the exact nature of these sites is in doubt. In montmorillonite, there are two likely possibilities for formation of the recalcitrant fraction: sites between the clay lamella and sites within clay particle aggregates. Because montmorillonite may be an important fraction of many soils, we have explored the formation of slowly desorbing toluene on a montmorillonite clay that was ion exchanged with five different ions (K+, Na+, Ca2+, Mg2+, and Fe3+) to form mineralogically similar clays with varying interlamellar spacing. The recalcitrant fraction was quantified for varying sorption and desorption times. The type of ion exchanged into the clay appears to have an important influence on the formation of a recalcitrant fraction.  相似文献   

12.
刘秉儒  牛宋芳  张文文 《生态学报》2019,39(24):9171-9178
柠条(Caragana korshinskii)是荒漠草原区主要的造林绿化树种,研究其根际土壤微生物和酶活性与不同土壤类型土壤粒径组成的关系有重要意义,然而土壤粒径对荒漠草原柠条根际土壤微生物数量和酶活性的影响知之甚少,探讨土壤颗粒组分与微生物数量、土壤酶活性之间的关系,以及土壤颗粒组成对荒漠草原区固沙灌木植物柠条根际土壤微生物数量及酶活性的影响,可为揭示荒漠草原土壤退化及生态修复提供参考。以宁夏荒漠草原区土壤粒径组成差异显著的灰钙土、红黏土、风沙土环境下栽植的柠条为研究对象,研究不同土壤颗粒组成对根际土壤微生物数量及酶活性的相互关系与影响。结果表明:土壤微生物的数量表现为细菌放线菌真菌。根际土壤中的细菌、真菌数量显著高于非根际,且在3种不同类型的土壤中随着细砂粒的增多,真菌和放线菌数量逐渐降低,而细菌数量呈先增大后减小的趋势;根际与非根际土壤的蔗糖酶、碱性磷酸酶及过氧化氢酶活性均呈现出灰钙土红黏土风沙土的趋势,红黏土根际土壤中的脲酶活性显著高于灰钙土与风沙土;除过氧化氢酶外,土壤酶活性表现为根际高于非根际,在3种不同类型的土壤中随着细砂含量的增加,土壤酶活性均呈递减趋势。土壤颗粒组成与微生物数量之间没有明显的相关性,而与土壤酶活性之间显著相关,土壤酶活性与黏粒、粉粒呈正相关,与细砂、中砂呈负相关关系,根际土壤中酶活性更高,能够为植物及微生物提供更多的营养。  相似文献   

13.
Quantitative knowledge of stabilization- and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (soil C) in the tropics. Although it is well documented that different soil types have different soil C stocks, it is presently unknown how different soil types affect the stability of recently formed soil C. Here, we analyze the main controls of soil C storage in the top 0.1 m of soils developed on Tertiary sediments and soils developed on volcanic ashes. Using a combination of fractionation techniques with 13C isotopes analyses we had the opportunity to trace origin and stability of soil carbon in different aggregate fractions under pasture and secondary forest. Soil C contents were higher in volcanic ash soils (47130 g kg−1) than in sedimentary soils (1950 g kg−1). Mean residence time (MRT) of forest-derived carbon in pastures increased from 37 to 57 years with increasing silt + clay content in sedimentary soils, but was independent from soil properties in volcanic ash soils. MRTs of pasture-derived carbon in secondary forests were considerably shorter, especially in volcanic ash soils, where no pasture-derived carbon could be detected in any of the four studied secondary forests. The implications of these results are that the MRT of recently incorporated organic carbon depends on clay mineralogy and is longer in soils dominated by smectite than non-crystalline minerals. Our results show that the presence of soil C stabilization processes, does not necessarily mean that recent incorporated soil C will also be effectively stabilized.  相似文献   

14.
The biogeochemical properties of soils drive ecosystem function and vegetation dynamics, and hence soil restoration after mining should aim to reinstate the soil properties and hydrological dynamics of remnant ecosystems. The aim of this study is to assess soil structure in two vegetation types in an arid ecosystem, and to understand how these soil properties compare to a reconstructed soil profile after mining. In an arid ecosystem in southeast Australia, soil samples were collected at five depths (to 105 cm) from remnant woodland and shrubland sites, and sites either disturbed or totally reconstructed after mining. We assessed soil physico‐chemical properties and microbial activity. Soils in the remnant arid ecosystem had coarse‐textured topsoils that overlay clay horizons, which allows water to infiltrate and avoid evaporation, but also slows drainage to deeper horizons. Conversely, reconstructed soils had high sand content at subsoil horizons and high bulk density and compaction at surface layers (0–20 cm). Reconstructed soils had topsoils with higher pH and electrical conductivity. The reconstructed soils did not show increased microbial activity with time since restoration. Overall, the reconstructed soil horizons were not organized in a way that allowed rainfall infiltration and water storage, as is imperative to arid‐zone ecosystem function. Future restoration efforts in arid ecosystems should focus on increasing sand content of soils near the surface, to reduce evaporative water loss and improve soil quality and plant health.  相似文献   

15.
Soil compaction and forest floor removal influence fundamental soil processes that control forest productivity and sustainability. We investigated effects of soil compaction and forest floor removal on tree growth, N uptake and N status in ponderosa pine. Factorial combinations of soil compaction (non-compacted and compacted) and forest floor removal (forest floor present and no forest floor) were applied to three different surface soil textures. For studying N uptake, four trees from every treatment were 15N labeled with 130.6 mg m–2 of 15N. Tree responses to compaction were dependent on the forest floor removal level. In loam and clay soils, non-compacted+no forest floor was beneficial to tree growth. Tree growth was depressed with compaction+no forest floor in clay soil. In sandy loam soil, compaction+no forest floor showed the best tree growth. No N deficiency was found in any soil type but a graphical method suggested correlation between N status and tree growth. In loam and clay soils, compaction+forest floor present increased N uptake. Nitrogen uptake was explained significantly by potential N mineralization in loam and clay soils. In sandy loam soil, the effects of compaction and forest floor removal were more complex, with the N uptake improved in the compaction+no forest floor treatment and reduced under compaction+forest floor present. Soil compaction may have influenced N tracer uptake because of improved unsaturated flow and root-soil contact. However, N immobilization may have restricted N uptake in compaction+forest floor present in the sandy loam soil. The study illustrates how soil properties and site preparation can potentially interact to affect N dynamics and forest productivity.  相似文献   

16.
17.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

18.
Spohn  Marie 《Biogeochemistry》2020,147(3):225-242

Despite the importance of phosphorus (P) as a macronutrient, the factors controlling the pool sizes of organic and inorganic P (OP and IP) in soils are not yet well understood. Therefore, the aim of this study was to gain insights into the pools sizes of OP, IP and organic carbon (OC) in soils and soil particle size fractions. For this purpose, I analyzed the distribution of OP, IP, and OC among particle size fractions depending on geographical location, climate, soil depth, and land use, based on published data. The clay size fraction contained on average 8.8 times more OP than the sand size fraction and 3.9 and 3.2 times more IP and OC, respectively. The OP concentrations of the silt and clay size fraction were both negatively correlated with mean annual temperature (R2 = 0.30 and 0.31, respectively, p < 0.001). The OC:OP ratios of the silt and clay size fraction were negatively correlated with latitude (R2 = 0.49 and 0.34, respectively, p < 0.001). Yet, the OC:OP ratio of the clay size fraction changed less markedly with latitude than the OC:OP ratio of the silt and the sand size fraction. The OC concentrations of all three particle size fractions were significantly (p < 0.05) lower in soils converted to cropland than in adjacent soils under natural vegetation. In contrast, the OP concentration was only significantly (p < 0.05) decreased in the sand size fraction but not in the other two particle size fractions due to land-use change. Thus, the findings suggest that OP is more persistent in soil than OC, which is most likely due to strong sorptive stabilization of OP compounds to mineral surfaces.

  相似文献   

19.
Summary Incubation studies were carried out to investigate the release of sulphur and nitrogen in West Indian soils. Sulphur and nitrogen released or fixed were estimated at 10 days intervals up to 60 days incubation period.All the soils released sulphate when incubated at 30°C. A rapid initial flush of mineralization of both sulphur and nitrogen took place in Cocal fine sand and Montreal sandy loam. In Piarco sandy clay loam and Mayaro sandy loam sulphur mineralization was not accompanied by a concomitant mineralization of nitrogen. An inconsistent pattern of release of sulphur and nitrogen was noticed in Montserrat clay, Akers sandy clay loam, Bellevue sandy clay loam and Soufriere cindery gravelly loamy sand.The release of sulphur does not appear to be related to the total amount of carbon, nitrogen or sulphur. Nitrogen mineralized was significantly correlated with total nitrogen and total sulphur. The correlation between organic matter and nitrogen mineralized was highly significant (r=0.87**) whereas with sulphur mineralized it did not reach significance. This suggests that nitrogen and sulphur are not mineralized at the same rate in these soils.  相似文献   

20.
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号