首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.  相似文献   

2.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

3.
Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete L-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since L-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize L-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for D-pantothenate. When the resulting strain, C. glutamicum 13032DeltailvADeltapanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM L-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the L-valine biosynthesis pathway.  相似文献   

4.
谷氨酸棒状杆菌是目前微生物发酵生产L-缬氨酸的主要工业菌株。文中首先在谷氨酸棒状杆菌VWB-1中敲除了alaT (丙氨酸氨基转移酶),获得突变菌株VWB-2,作为出发菌株。进而对L-缬氨酸合成途径关键酶——乙酰羟酸合酶 (ilvBN) 的调节亚基进行定点突变 (ilvBN1M13),解除L-缬氨酸对该酶的反馈抑制。然后辅助过量表达L-缬氨酸合成途径关键基因ilvBN1M13、乙酰羟酸异构酶 (ilvC)、二羟酸脱水酶 (ilvD)、支链氨基酸氨基转移酶 (ilvE),加强通往L-缬氨酸的碳代谢流,提高菌株的L-缬氨酸水平。最后,基于过量表达L-缬氨酸转运蛋白编码基因brnFE及其调控蛋白编码基因lrp1,提高细胞的L-缬氨酸转运能力。最终获得工程菌株VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE在5 L发酵罐中的L-缬氨酸产量达到461.4 mmol/L,糖酸转化率达到0.312 g/g葡萄糖。  相似文献   

5.
We recently engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of L: -valine from glucose by inactivation of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes, encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. Based on the first generation of pyruvate-dehydrogenase-complex-deficient C. glutamicum strains, a second generation of high-yield L-valine producers was constructed by successive deletion of the genes encoding pyruvate:quinone oxidoreductase, phosphoglucose isomerase, and pyruvate carboxylase and overexpression of ilvBNCE. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 410 mM (48 g/l) L-valine, showed a maximum yield of 0.75 to 0.86 mol/mol (0.49 to 0.56 g/g) of glucose in the production phase and, in contrast to the first generation strains, excreted neither pyruvate nor any other by-product tested.  相似文献   

6.
The addition of L-alanine reduced lactate dehydrogenase leakage from primary cultured rat hepatocytes treated with galactosamine (D-gal), while D-alanine and other amino acids did not. However, the mechanisms have not yet been entirely clarified. In this study, we used various inhibitors of metabolism, i.e., aminooxyacetate, oligomycin, and quinolinic acid, to examine the relation between this protective effect and the metabolism of L-alanine. Quinolinic acid (10 mM) did not affect the hepatoprotective effect of L-alanine, while oligomycin (0.1 mug/ml) and aminooxyacetate (1 mM) eliminated the hepatoprotective effect of L-alanine. L-Alanine also increased the albumin secretion by cultured hepatocytes treated with D-gal, while pyruvate had little effect. It was revealed that the intracellular content of pyruvate did not increase as a result of addition of L-alanine. These results are consistent with the hypothesis that L-alanine metabolism is important for hepatoprotection, but pyruvate cannot be used as a substitute for L-alanine.  相似文献   

7.
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.  相似文献   

8.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

9.
Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.  相似文献   

10.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

11.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

12.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

13.
14.
For Escherichia coli, it has been assumed that L-alanine is synthesized by alanine-valine transaminase (AvtA) in conjunction with an unknown alanine aminotransferase(s). We isolated alanine auxotrophs from a prototrophic double mutant deficient in AvtA and YfbQ, a novel alanine aminotransferase, by chemical mutagenesis. A shotgun cloning experiment identified two genes, uncharacterized yfdZ and serC, that complemented the alanine auxotrophy. When the yfdZ- or serC-mutation was introduced into the double mutant, one triple mutant (avtA yfbQ yfdZ) showed alanine auxotrophy, and another (avtA yfbQ serC), prototrophy. In addition, we found that four independent alanine auxotrophs possessed a point mutation in yfdZ but not in serC. We also found that yfdZ expression was induced in minimal medium. Furthermore, yfbQ-bearing plasmid conferred the ability to excrete alanine on the mutant lacking D-amino acid dehydrogenase-encoding gene, dadA. From these results, we concluded that E. coli synthesizes L-alanine by means of three aminotransferases, YfbQ, YfdZ, and AvtA.  相似文献   

15.
Alanine dehydrogenase (L-alanine: NAD+ oxidoreductase, deaminating) was simply purified to homogeneity from a thermophile, Bacillus sphaericus DSM 462, by ammonium sulfate fractionation, red-Sepharose 4B chromatography and preparative slab gel electrophoresis. The enzyme had a molecular mass of about 230 kDa and consisted of six subunits with an identical molecular mass of 38 kDa. The enzyme was much more thermostable than that from a mesophile, B. sphaericus, and retained its full activity upon heating at 75 degrees C for at least 60 min and with incubation in pH 5.5-9.5 at 75 degrees C for 10 min. The enzyme can be stored without loss of its activity in a frozen state (-20 degrees C, at pH 7.2) for over 5 months. The optimum pH for the L-alanine deamination and pyruvate amination were around 10.5 and 8.2, respectively. The enzyme exclusively catalyzed the oxidative deamination of L-alanine in the presence of NAD+, but showed low amino acceptor specificity; hydroxypyruvate, oxaloacetate, 2-oxobutyrate and 3-fluoropyruvate are also aminated as well as pyruvate in the presence of NADH and ammonia. Initial velocity and product inhibition studies showed that the reductive amination proceeded through a sequential mechanism containing partially random binding. NADH binds first to the enzyme, and then pyruvate and ammonia bind in a random fashion. The products are sequentially released from the enzyme in the order L-alanine then NAD+. A dead-end inhibition by the formation of an abortive ternary complex which consists of the enzyme, NAD+ and pyruvate was included in the reaction. A possible role of the dead-end inhibition is to prevent the enzyme from functioning in the L-alanine synthesis. The Michaelis constants for the substrates were as follows: NADH, 0.10 mM; pyruvate, 0.50 mM; ammonia, 38.0 mM; L-alanine, 10.5 mM and NAD+, 0.26 mM.  相似文献   

16.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.  相似文献   

17.
1. A reversible transamination reaction between L-glutamate and pyruvate, or L-alanine and 2-oxoglutarate, takes place in the mitochondrial and cell sap fractions of rat brain. 2. The maximum rate of the transamination reaction in both subfractions was observed in the presence of a keto- substrate concentration of 2.5 mM only, but an amino- donor concentration of 20 mM. 3. The apparent Menten-Michaelis constants for pyruvate and 2-oxoglutarate were of a 10(-4) M and for L-glutamate and L-alanine of a 10(-3) M order and were approximately the same for both fractions. 4. The ratio of the initial rate of the L-alanine + 2-oxoglutarate to the L-glutamate + pyruvate transamination reaction in the cell sap and mitochondrial fractions amounted to up to 2. 5. The apparent equilibrium constant derived from the Haldane equation was 7.01 for cell sap alanine aminotransferase and 4 for the mitochondrial enzyme. 6. Increasing pyridoxal-5'-phosphate concentrations in the incubation medium were accompanied by only non-significant stimulation of alanine aminotransferase activity in the mitochondrial and cell sap fractions. 7. A comparison of the kinetic data obtained on mitochondrial and cell sap alanine aminotransferases in vitro with the actual substrate concentrations in the transamination reaction in nervous tissue in vivo indicates that the direction of the transamination reaction in situ seems to be determined simply by compartmentation and by dynamic changes in amino- and keto- substrates in the mitochondrial and cell sap spaces.  相似文献   

18.
Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine.  相似文献   

19.
The properties of Na+-dependent L-alanine transport in human erythrocytes were investigated using K+ as the Na+ substitute. Initial rates of Na+-dependent L-alanine uptake (0.2 mM extracellular amino acid) for erythrocytes from 22 donors ranged from 40 to 180 mumol/litre of cells per h at 37 degrees C. Amino acid uptake over the concentration range 0.1-8 mM was consistent with a single saturable component of Na+-dependent L-alanine transport. Apparent Km and Vmax. values at 37 and 5 degrees C measured in erythrocytes from the same donor were 0.27 and 0.085 mM respectively, and 270 and 8.5 mumol/litre of cells per h respectively. The transporter responsible for this uptake was identified as system ASC on the basis of cross-inhibition studies with a series of 42 amino acids and amino acid analogues. Apparent Ki values for glycine, L-alpha-amino-n-butyrate, L-serine and L-leucine as inhibitors of Na+-dependent L-alanine uptake at 37 degrees C were 4.2, 0.12, 0.16 and 0.70 mM respectively. Reticulocytes from a patient with inherited pyruvate kinase deficiency were found to have a 10-fold elevated activity of Na+-dependent L-alanine uptake compared with erythrocytes from normal donors. Separation of erythrocytes according to cell density (cell age) established that even the oldest mature erythrocytes retained significant Na+-dependent L-alanine transport activity. Amino acid transport was, however, a more sensitive indicator of cell age than acetylcholinesterase activity. Erythrocytes were found to accumulate L-alanine against its concentration gradient (distribution ratio approx. 1.5 after 4 h incubation), an effect that was abolished in Na+-free media. Na+-dependent L-alanine uptake was shown to be associated with L-alanine-dependent Na+ influx, the measured coupling ratio being 1:1.  相似文献   

20.
In the phototrophic nonsulfur bacterium Rhodobacter capsulatus E1F1, L-alanine dehydrogenase aminating activity functions as an alternative route for ammonia assimilation when glutamine synthetase is inactivated. L-Alanine dehydrogenase deaminating activity participates in the supply of organic carbon to cells growing on L-alanine as the sole carbon source. L-Alanine dehydrogenase is induced in cells growing on pyruvate plus nitrate, pyruvate plus ammonia, or L-alanine under both light-anaerobic and dark-heterotrophic conditions. The enzyme has been purified to electrophoretic and immunological homogeneity by using affinity chromatography with Red-120 agarose. The native enzyme was an oligomeric protein of 246 kilodaltons (kDa) which consisted of six identical subunits of 42 kDa each, had a Stokes' radius of 5.8 nm, an s20.w of 10.1 S, a D20,w of 4.25 x 10(-11) m2 s-1, and a frictional quotient of 1.35. The aminating activity was absolutely specific for NADPH, whereas deaminating activity was strictly NAD dependent, with apparent Kms of 0.25 (NADPH), 0.15 (NAD+), 1.25 (L-alanine), 0.13 (pyruvate), and 16 (ammonium) mM. The enzyme was inhibited in vitro by pyruvate or L-alanine and had two sulfhydryl groups per subunit which were essential for both aminating and deaminating activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号