首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligases are the enzymes essential for DNA replication, repair and recombination in all organisms. The bacterial DNA ligases involved in DNA replication require NAD(+) for activity, but eukaryotic and viral DNA ligases require ATP. Because of their essential nature, unique structures and widespread existence in nature, bacterial DNA ligases represent a class of valuable targets for identifying novel and selective antibacterial agents. In this study, we cloned and expressed the ligA gene from Streptococcus pneumoniae, and characterized this ligA-encoded NAD(+)-dependent DNA ligase. We then screened small molecule chemical libraries using a biochemical assay and identified a new small molecule with a structure of 2,4-diamino-7-dimethylamino-pyrimido[4,5-d]pyrimidine. We show that this small molecule is a specific inhibitor of bacterial NAD(+)-dependent DNA ligases. Biochemical studies show that this molecule inhibits NAD(+)-dependent DNA ligases, but not ATP-dependent enzymes. The molecule inhibits NAD(+)-dependent DNA ligases competitively with respect to NAD(+) and specifically inhibits enzyme adenylation, but not DNA adenylation or ligation. Labeling studies establish that this molecule inhibits the incorporation of thymidine into DNA and that overexpression of DNA ligase in the cell abolishes this inhibition. Finally, microbiological studies show that this molecule exhibits a broad spectrum of antibacterial activity. Together, this study shows that this small molecule inhibitor identified is specific to bacterial NAD(+)-dependent DNA ligases, exhibits a broad spectrum of antibacterial activities, and has the potential to be developed into an antibacterial agent.  相似文献   

2.
The endless tale of non-homologous end-joining   总被引:1,自引:0,他引:1  
Weterings E  Chen DJ 《Cell research》2008,18(1):114-124
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.  相似文献   

3.
Exonuclease I (ExoI) from Escherichia coli is a monomeric enzyme that processively degrades single stranded DNA in the 3' to 5' direction and has been implicated in DNA recombination and repair. Determination of the structure of ExoI to 2.4 A resolution using X-ray crystallography verifies the expected correspondence between a region of ExoI and the exonuclease (or proofreading) domains of the DNA polymerases. The overall fold of ExoI also includes two other regions, one of which extends the exonuclease domain and another that can be described as an elaborated SH3 domain. These three regions combine to form a molecule that is shaped like the letter C, although it also contains a segment that effectively converts the C into an O-like shape. The structure of ExoI thus provides additional support for the idea that DNA metabolizing enzymes achieve processivity by completely enclosing the DNA.  相似文献   

4.
Type IIS restriction enzymes have been successfully used as "universal" restriction enzymes in DNA manipulations. We took a step further to develop a rapid technique for recombining DNA fragments, fully automatic single-tube recombination (FASTR), which enables multiple-fragment DNA recombination in a single step. Crude PCR products are directly mixed with both type IIS restriction endonuclease and DNA ligase to initiate a spontaneous and one-way recombination reaction. Highly efficient DNA recombination can be achieved by an inhibition of DNA polymerase with aphidicolin and a selective digestion of template DNAs by DpnI, a restriction enzyme to digest hemi-methylated DNA in the reaction solution; thereby the entire procedure takes less than 15 min. Owing to its simplicity, efficiency and rapidity, one-step FASTR can be applied to a wide range of DNA manipulations including those involving high-throughput applications where significant reduction in time and cost is expected.  相似文献   

5.
Model for the interaction of DNA junctions and resolving enzymes.   总被引:6,自引:0,他引:6  
Four-way DNA junctions are thought to be important intermediates in a number of recombination processes. Resolution of these junctions occurs by cleavage of two strands of DNA to generate two duplex molecules. The interaction between DNA junctions and resolving enzymes appears to be largely structure-specific, reflecting a molecular recognition on a significant scale. We propose a working model for this interaction that takes account of the present state of knowledge of the structure of the DNA junction, and the substrate requirements of the enzymes. We note that three different enzymes introduce cleavages at phosphodiester bonds that are presented on one side of the molecule, suggesting that the enzymes selectively interact with this face of the junction. By forcing a junction of constant sequence to adopt one or other of the two possible antiparallel isomers, we show that the junction is cleaved in such a way as to suggest a constant mode of interaction with the protein that is dependent on structure rather than sequence. We propose that the feature that is recognized is a mutual inclination of two DNA helices at approximately 120 degrees. We show that a number of DNA substrates that contain similar inclined helices, such as a three-way junction, bulged duplexes and a duplex that is curved because of repeated runs of oligoadenine sequences, are each cleaved by phage T4 endonuclease VII. This mode of DNA-protein interaction could be significant in either recombination or DNA repair processes.  相似文献   

6.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

7.
Copy-choice illegitimate DNA recombination revisited.   总被引:6,自引:1,他引:5       下载免费PDF全文
Nearly precise excision of a transposon related to Tn10 from an Escherichia coli plasmid was used as a model to study illegitimate DNA recombination between short direct repeats. The excision was stimulated 100-1000 times by induction of plasmid single-stranded DNA synthesis and did not involve transfer of DNA from the parental to the progeny molecule. We conclude that it occurred by copy-choice DNA recombination, and propose that other events of recombination between short direct repeats might be a result of the same process.  相似文献   

8.
In vitro studies have demonstrated that Hin-catalysed site-specific DNA inversion occurs within a tripartite invertasome complex assembled at a branch on a supercoiled DNA molecule. Multiple DNA exchanges within a recombination complex (processive recombination) have been found to occur with particular substrates or reaction conditions. To investigate the mechanistic properties of the Hin recombination reaction in vivo, we have analysed the topology of recombination products generated by Hin catalysis in growing cells. Recombination between wild-type recombination sites in vivo is primarily limited to one exchange. However, processive recombination leading to knotted DNA products is efficient on substrates containing recombination sites with non-identical core nucleotides. Multiple exchanges are limited by a short DNA segment between the Fis-bound enhancer and closest recombination site and by the strength of Fis-Hin interactions, implying that the enhancer normally remains associated with the recombining complex throughout a single exchange reaction, but that release of the enhancer leads to multiple exchanges. This work confirms salient mechanistic aspects of the reaction in vivo and provides strong evidence for the propensity of plectonemically branched DNA in prokaryotic cells. We also demonstrated that a single DNA exchange resulting in inversion in vitro is accompanied by a loss of four negative supercoils.  相似文献   

9.
The probability that two sites on a linear DNA molecule will contact each other by looping depends on DNA flexibility. Although the flexibility of naked DNA in vitro is well characterized, looping in chromatin is poorly understood. By extending existing theory, we present a single equation that describes DNA looping over all distances. We also show that DNA looping in vitro can be measured accurately by FLP recombination between sites from 74 bp to 15 kb apart. In agreement with previous work, a persistence length of 50 nm was determined. FLP recombination of the same substrates in mammalian cells showed that chromatin increases the flexibility of DNA at short distances, giving an apparent persistence length of 27 nm.  相似文献   

10.
Fu X  Wang H  Zhang X 《Journal of virology》2002,76(12):5866-5874
Homologous recombination is a prominent feature of herpes simplex virus (HSV) type 1 DNA replication. This has been demonstrated and traditionally studied in experimental settings where repeated sequences are present or are being introduced into a single molecule for subsequent genome isomerization. In the present study, we have designed a pair of unique HSV amplicon plasmids to examine in detail intermolecular homologous recombination (IM-HR) between these amplicon plasmids during HSV-mediated DNA replication. Our data show that IM-HR occurred at a very high frequency: up to 60% of the amplicon concatemers retrieved from virion particles underwent intermolecular homologous recombination. Such a high frequency of IM-HR required that both plasmids be replicated by HSV-mediated replication, as IM-HR events were not detected when either one or both plasmids were replicated by simian virus 40-mediated DNA replication, even with the presence of HSV infection. In addition, the majority of the homologous recombination events resulted in sequence replacement or targeted gene repair, while the minority resulted in sequence insertion. These findings imply that frequent intermolecular homologous recombination may contribute directly to HSV genome isomerization. In addition, HSV-mediated amplicon replication may be an attractive model for studying intermolecular homologous recombination mechanisms in general in a mammalian system. In this regard, the knowledge obtained from such a study may facilitate the development of better strategies for targeted gene correction for gene therapy purposes.  相似文献   

11.
Homologous recombination serves multiple roles in DNA repair that are essential for maintaining genomic stability. We here describe RI-1, a small molecule that inhibits the central recombination protein RAD51. RI-1 specifically reduces gene conversion in human cells while stimulating single strand annealing. RI-1 binds covalently to the surface of RAD51 protein at cysteine 319 that likely destabilizes an interface used by RAD51 monomers to oligomerize into filaments on DNA. Correspondingly, the molecule inhibits the formation of subnuclear RAD51 foci in cells following DNA damage, while leaving replication protein A focus formation unaffected. Finally, it potentiates the lethal effects of a DNA cross-linking drug in human cells. Given that this inhibitory activity is seen in multiple human tumor cell lines, RI-1 holds promise as an oncologic drug. Furthermore, RI-1 represents a unique tool to dissect the network of reaction pathways that contribute to DNA repair in cells.  相似文献   

12.
T Formosa  B M Alberts 《Cell》1986,47(5):793-806
To simulate a reaction that occurs in T4-infected cells, we have developed an in vitro DNA synthesis system that requires seven highly purified proteins encoded by this bacteriophage: the DNA polymerase "holoenzyme" (four proteins), gene 32 protein, dda DNA helicase, and uvsX protein - an enzyme that catalyzes homologous DNA pairing and is functionally homologous to the recA protein. In the reaction observed, the 3'OH end of one single-stranded DNA molecule primes DNA synthesis using a double-stranded DNA molecule of homologous sequence as the template. The uvsX protein continuously removes the new DNA chain from its template, so that DNA is synthesized by a conservative mechanism. This type of reaction, which requires the cooperation of recombination and replication enzymes, seems likely to be a general feature of DNA metabolism.  相似文献   

13.
Fluorescence microscopy provides a powerful method to directly observe single enzymes moving along a DNA held in an extended conformation. In this work, we present results from single EcoRV enzymes labeled with quantum dots which interact with DNA manipulated by double optical tweezers. The application of quantum dots facilitated accurate enzyme tracking without photobleaching whereas the tweezers allowed us to precisely control the DNA extension. The labeling did not affect the biochemical activity of EcoRV checked by directly observing DNA digestion on the single molecule level. We used this system to demonstrate that during sliding, the enzyme stays in close contact with the DNA. Additionally, slight overstretching of the DNA resulted in a significant decrease of the 1D diffusion constant, which suggests that the deformation changes the energy landscape of the sliding interaction. Together with the simplicity of the setup, these results demonstrate that the combination of optical tweezers with fluorescence tracking is a powerful tool for the study of enzyme translocation along DNA.  相似文献   

14.
Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.  相似文献   

15.
Cin is a member of the hin family of complementing site-specific recombinases which regulate the alternate expression of genes by inverting DNA segments. Common characteristics of this family of recombination systems are the requirement for an enhancer-like element in cis and the specificity for inversely oriented recombination sites on the same DNA molecule. We have isolated two mutants of the Cin recombinase which will efficiently recombine a substrate lacking the enhancer. In addition, these mutant proteins also catalyse efficient recombination between sites in direct orientation or on different DNA molecules. Both mutations are due to single amino acid substitutions at different positions in the protein and the two mutants have slightly different phenotypes. The finding that the loss of enhancer dependence is coupled to a change in topological specificity leads us to conclude that the enhancer determines the specificity of the system for DNA inversion.  相似文献   

16.
D. Yang  A. S. Waldman 《Genetics》1992,132(4):1081-1093
We studied the effects of double-strand breaks on intramolecular extrachromosomal homologous recombination in mammalian cells. Pairs of defective herpes thymidine kinase (tk) sequences were introduced into mouse Ltk- cells on a DNA molecule that also contained a neo gene under control of the SV40 early promoter/enhancer. With the majority of the constructs used, gene conversions or double crossovers, but not single crossovers, were recoverable. DNA was linearized with various restriction enzymes prior to transfection. Recombination events producing a functional tk gene were monitored by selecting for tk-positive colonies. For double-strand breaks placed outside of the region of homology, maximal recombination frequencies were measured when a break placed the two tk sequences downstream from the SV40 early promoter/enhancer. We observed no relationship between recombination frequency and either the distance between a break and the tk sequences or the distance between the tk sequences. The quantitative effects of the breaks appeared to depend on the degree of homology between the tk sequences. We also observed that inverted repeats recombined as efficiently as direct repeats. The data indicated that the breaks influenced recombination indirectly, perhaps by affecting the binding of a factor(s) to the SV40 promoter region which in turn stimulated or inhibited recombination of the tk sequences. Taken together, we believe that our results provide strong evidence for the existence of a pathway for extrachromosomal homologous recombination in mammalian cells that is distinct from single-strand annealing. We discuss the possibility that intrachromosomal and extrachromosomal recombination have mechanisms in common.  相似文献   

17.
Catenanes (interlocked circular DNA molecules) are the exclusive products of the bacteriophage λ integrative recombination reaction in vitro when the substrate is a supercoiled DNA molecule containing both the attP and attB sites. It is proposed that the catenation results from the superhelical form of the substrate DNA. We also show that both circular DNA products of a single recombination event can be recovered as superhelical molecules with a superhelical density approximately that of the substrate DNA. The recombination reaction must therefore occur as a coupled process which does not permit free rotation around single-strand breaks at any stage.  相似文献   

18.
In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.  相似文献   

19.
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.  相似文献   

20.
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5′-CCGC/GG-3′ (“/” marks the cleavage position) and cuts it to generate 3′-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号