首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.  相似文献   

3.
Transposable elements (TEs) account for up to 80% of the wheat genome and are considered one of the main drivers of wheat genome evolution. However, the contribution of TEs to the divergence and evolution of wheat genomes is not fully understood. In this study, we have developed 55 miniature inverted-repeat transposable element (MITE) markers that are based on the presence/absence of an element, with over 60% of these 55 MITE insertions associated with wheat genes. We then applied these markers to assess genetic diversity among Triticum and Aegilops species, including diploid (AA, BB and DD genomes), tetraploid (BBAA genome) and hexaploid (BBAADD genome) species. While 18.2% of the MITE markers showed similar insertions in all species indicating that those are fossil insertions, 81.8% of the markers showed polymorphic insertions among species, subspecies, and accessions. Furthermore, a phylogenetic analysis based on MITE markers revealed that species were clustered based on genus, genome composition, and ploidy level, while 47.13% genetic divergence was observed between the two main clusters, diploids versus polyploids. In addition, we provide evidence for MITE dynamics in wild emmer populations. The use of MITEs as evolutionary markers might shed more light on the origin of the B-genome of polyploid wheat.  相似文献   

4.
Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives.  相似文献   

5.
Transposable elements (TEs) are self-replicating genetic sequences and are often described as important ‘drivers of evolution’. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15–25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8–12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.  相似文献   

6.
7.
Bergero R  Forrest A  Charlesworth D 《Genetics》2008,178(2):1085-1092
Mechanisms involved in eroding fitness of evolving Y chromosomes have been the focus of much theoretical and empirical work. Evolving Y chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are nonautonomous DNA transposons, often inserted in introns and untranslated regions of genes. Thus, if they invade Y-linked genes and selection against their insertion is ineffective, they could contribute to genetic degeneration of evolving Y chromosomes. Here, we examine the population dynamics of active MITEs in the young Y chromosomes of the plant Silene latifolia and compare their distribution with those in recombining genomic regions. To isolate active MITEs, we developed a straightforward approach on the basis of the assumption that recent transposon insertions or excisions create singleton or low-frequency size polymorphisms that can be detected in alleles from natural populations. Transposon display was then used to infer the distribution of MITE insertion frequencies. The overall frequency spectrum showed an excess of singleton and low-frequency insertions, which suggests that these elements are readily removed from recombining chromosomes. In contrast, insertions on the Y chromosomes were present at high frequencies. Their potential contribution to Y degeneration is discussed.  相似文献   

8.
9.
MAK,a computational tool kit for automated MITE analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
Yang G  Hall TC 《Nucleic acids research》2003,31(13):3659-3665
Miniature inverted repeat transposable elements (MITEs) are ubiquitous and numerous in higher eukaryotic genomes. Analysis of MITE families is laborious and time consuming, especially when multiple MITE families are involved in the study. Based on the structural characteristics of MITEs and genetic principles for transposable elements (TEs), we have developed a computational tool kit named MITE analysis kit (MAK) to automate the processes (http://perl.idmb.tamu.edu/mak.htm). In addition to its ability to routinely retrieve family member sequences and to report the positions of these elements relative to the closest neighboring genes, MAK is a powerful tool for revealing anchor elements that link MITE families to known transposable element families. Implementation of the MAK is described, as are genetic principles and algorithms used in its derivation. Test runs of the programs for several MITE families yielded anchor sequences that retain TIRs and coding regions reminiscent of transposases. These anchor sequences are consistent with previously reported putative autonomous elements for these MITE families. Furthermore, analysis of two MITE families with no known links to any transposon family revealed two novel transposon families, namely Math and Kid, belonging to the IS5/Harbinger/PIF superfamily.  相似文献   

10.
11.
12.
Distribution and characterization of over 1000 T-DNA tags in rice genome   总被引:22,自引:0,他引:22  
We generated T-DNA insertions throughout the rice genome for saturation mutagenesis. More than 1,000 flanking sequences were mapped on 12 rice chromosomes. Our results showed that T-DNA tags were not randomly spread on rice chromosomes and were preferentially inserted in gene-rich regions. Few insertions (2.4%) were found in repetitive regions. T-DNA insertions in genic (58.1%) and intergenic regions (41.9%) showed a good correlation with the predicted size distribution of these sequences in the rice genome. Whereas, obvious biases were found for the insertions in the 5'- and 3'-regulatory regions outside the coding regions both at 500-bp size and in introns rather than in exons. Such distribution patterns and biases for T-DNA integration in rice are similar to that of the previous report in Arabidopsis, which may result from T-DNA integration mechanism itself. Rice will require approximately the same number of T-DNA insertions for saturation mutagenesis as will Arabidopsis. A database of the T-DNA insertion sites in rice is publicly available at our web site (http://www.genomics.zju.edu.cn/ricetdna).  相似文献   

13.
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.  相似文献   

14.
15.
16.
Sakai H  Tanaka T  Itoh T 《Gene》2007,392(1-2):59-63
Despite a wide distribution of transposable elements (TEs) in the genomes of higher eukaryotes, much of their evolutionary significance remains unclear. Recent studies have indicated that TEs are involved with biological processes such as gene regulation and the generation of new exons in mammals. In addition, the completion of the genome sequencings in Arabidopsis thaliana and Oryza sativa has permitted scientist to describe a genome-wide overview in plants. In this study, we examined the positions of TEs in the genome of O. sativa. Although we found that more than 10% of the structural genes contained TEs, they were underrepresented in exons compared with non-exonic regions. TEs also appeared to be inserted preferentially in 3'-untranslated regions in exons. These results suggested that purifying selection against TE insertion has played a major role during evolution. Moreover, our comparison of the numbers of TEs in the protein-coding regions between single copy genes and duplicate genes showed that TEs were more frequent in duplicate than single copy genes. This observation indicated that gene duplication events created a large number of functionally redundant genes. Subsequently, many of them were destroyed by TEs because the redundant copies were released from purifying selection. Another biological role of TEs was found to be the recruitment of new exons. We found that approximately 2% of protein-coding genes contained TEs in their coding regions. Insertion of TEs in genic regions may have the potential to be an evolutionary driving force for the creation of new biological functions.  相似文献   

17.
18.
Repetitive genomic sequences might have various structural features and properties distinct from those of the known transposable elements (TE). Here, the content and properties of the repetitive sequences present in a 200-kb region around the rice waxy locus were analyzed using the available rice genomic database. In our previous Southern blotting analysis, 70% of the segments in this region showed smeared patterns, but according to the present database analysis, the proportion of repetitive sequences in this region was only 15%. The repetitive segments in this 200-kb region comprised 75 repetitive sequences that we classified into 46 subfamilies: 21 subfamilies were known TEs or repetitive sequences and 25 subfamilies consisted of newly identified TEs or novel types of repetitive sequences. The region contains no long terminal repeat (LTR) retrotransposable elements, but miniature inverted repeat transposable elements (MITEs) constituted a major class among the elements identified. These MITEs showed remarkable structural divergence: 12 elements were found to be new members of known MITE superfamilies, while five elements had novel terminal structures, and did not belong to any known TE families. Interestingly, about 10% of the repetitive sequences, including virus-like sequences did not have any of the usual characteristics of TEs, suggesting that a certain proportion of repetitive sequences that might not share the transpositional mechanisms of known elements are dispersed in the compact rice genome.  相似文献   

19.
Miniature inverted-repeat transposable elements (MITEs) are short, non autonomous DNA elements that are widespread and abundant in plant genomes. The high sequence and size conservation observed in many MITE families suggest that they have spread recently throughout their respective host genomes. Here we present a maize genome wide analysis of three Tourist-like MITE families, mPIF, and two previously uncharacterized families, ZmV1 and Zead8. We undertook a bioinformatic analysis of MITE insertion sites, developed methyl-sensitive transposon display (M-STD) assays to estimate the associated level of CpG methylation at MITE flanking regions, and conducted a population genetics approach to investigate MITE patterns of expansion. Our results reveal that the three MITE families insert into genomic regions that present specific molecular features: they are preferentially AT rich, present low level of cytosine methylation as compared to the LTR retrotransposon Grande, and target site duplications are flanked by large and conserved palindromic sequences. Moreover, the analysis of MITE distances from predicted genes shows that 73% of 263 copies are inserted at less than 5 kb from the nearest predicted gene, and copies from Zead8 family are significantly more abundant upstream of genes. By employing a population genetic approach we identified contrasting patterns of expansion among the three MITE families. All elements seem to have inserted roughly 1 million years ago but ZmV1 and Zead8 families present evidences for activity of several master copies within the last 0.4 Mya.  相似文献   

20.
Miniature inverted repeat transposable elements (MITEs) are the most ubiquitous transposable elements in eukaryotic genomes; they play a prominent role in sequence divergence and genome evolution. There are many well-characterized Stowaway-like MITE families in wheat, but their distribution, abundance, and composition at the chromosome level are still not well understood. In this study, we systematically investigated the Stowaway-like MITEs in wheat group 7 chromosomes based on the survey sequences of isolated wheat chromosomes, to compare them at the chromosome level and to reveal their evolutionary role on wheat polyploidization. In summary, 2026 MITEs were identified, of which 587, 714, and 725 were distributed on 7A, 7B, and 7D chromosomes, respectively. There are more MITEs present on 7D, compared to 7A and 7B, suggesting A and B subgenomes eliminated some repetitive elements during two hybridization processes. Furthermore, some chromosome/arm-specific MITEs were also identified, providing information on the function and evolution of MITEs in wheat genomes. The sequence diversity of the MITE insertions was also investigated. This study for the first time investigated the abundance and composition of MITEs at the chromosome level, which will be beneficial to improve our understanding of the distribution of wheat MITEs and their evolutionary role in polyploidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号