首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibire(ts), namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1-10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.  相似文献   

2.
In an effort to identify a promoter suitable for studying early ocular development, we generated transgenic mice carrying the lacZ reporter gene linked to the tyrosinase-related protein 2 (TRP2) promoter. TRP2-lacZ was expressed in early retinal pigment epithelium (RPE) and early neural crest cells in embryos. The promoter activity was robust and consistent in independent transgenic lines. The transgene was also expressed in the optic nerve and neural crest-derived neuronal cells in which the endogenous TRP2 gene is not expressed. This suggests that repressor elements may be missing in the promoter used in this study. To test whether this promoter can be used to study melanocyte development, we cross-mated TRP2-lacZ transgenic mice with mice heterozygous for the Patch (Ph) mutation. The pattern of beta-galactosidase activity in the embryos correlates well with the pigmentation phenotype in postnatal and adult Ph/+ mice. We also generated transgenic mice expressing fibroblast growth factor 9 (FGF9) directed by the TRP2 promoter and examined the effect on ocular development. Ectopic expression of FGF9 in the early embryonic RPE switched its differentiation pathway to a neuronal fate, resulting in formation of a duplicated neural retina in transgenic mice. These studies demonstrate that the TRP2 promoter is valuable for transgenic studies of ocular differentiation and development of neural crest cells.  相似文献   

3.
Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we demonstrate a highly reproducible, light-dependent activation of neurons and precise control of firing frequency in vivo. To test the feasibility of mapping neural circuits, we exploited the circuitry formed between the olfactory bulb and the piriform cortex in anesthetized mice. In the olfactory bulb, individual mitral cells fired action potentials in response to light, and their firing rate was not influenced by costimulated glomeruli. However, in piriform cortex, the activity of target neurons increased as larger areas of the bulb were illuminated to recruit additional glomeruli. These results support a model of olfactory processing that is dependent upon mitral cell convergence and integration onto cortical cells. More broadly, these findings demonstrate a system for precise manipulation of neural activity in the intact mammalian brain with light and illustrate the use of ChR2 mice in exploring functional connectivity of complex neural circuits in vivo.  相似文献   

4.
By genetically targeting tumorigenesis to specific hypothalamic neurons in transgenic mice using the promoter region of the gonadotropin-releasing hormone (GnRH) gene to express the SV40 T-antigen oncogene, we have produced neuronal tumors and developed clonal, differentiated, neurosecretory cell lines. These cells extend neurites, express the endogenous mouse GnRH mRNA, release GnRH in response to depolarization, have regulatable fast Na+ channels found in neurons, and express neuronal, but not glial, cell markers. These immortalized cells will provide an invaluable model system for study of hypothalamic neurosecretory neurons that regulate reproduction. Significantly, their derivation demonstrates the feasibility of immortalizing differentiated neurons by targeting tumorigenesis in transgenic mice to specific neurons of the CNS.  相似文献   

5.
Lo L  Anderson DJ 《Neuron》2011,72(6):938-950
Neurotropic viruses that conditionally infect or replicate in molecularly defined neuronal subpopulations, and then spread transsynaptically, are powerful tools for mapping neural pathways. Genetically targetable retrograde transsynaptic tracer viruses are available to map the inputs to specific neuronal subpopulations, but an analogous tool for mapping synaptic outputs is not yet available. Here we describe a Cre recombinase-dependent, anterograde transneuronal tracer, based on the H129 strain of herpes simplex virus (HSV). Application of this virus to transgenic or knockin mice expressing Cre in peripheral neurons of the olfactory epithelium or the retina reveals widespread, polysynaptic labeling of higher-order neurons in the olfactory and visual systems, respectively. Polysynaptic pathways were also labeled from cerebellar Purkinje cells. In each system, the pattern of labeling was consistent with classical circuit-tracing studies, restricted to neurons, and anterograde specific. These data provide proof-of-principle for a conditional, nondiluting anterograde transsynaptic tracer for mapping synaptic outputs from genetically marked neuronal subpopulations.  相似文献   

6.
Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson''s disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.  相似文献   

7.
The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons.  相似文献   

8.
Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl(-) pump. While neurons can be optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression levels, we have encountered challenges with pushing expression to extremely high levels, including apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve strong expression without these cellular side effects. We found that high expression correlated with endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER proteins containing the KDEL ER retention sequence. We screened a number of different putative modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with augmented inhibitory function, in vitro and in vivo.  相似文献   

9.
10.
Immortalized retinal neurons have been established in tissue culture from retinal tumors arising in transgenic mice. The mice carry the SV40 T-antigen under the control of 5' flanking sequences from the human phenylethanolamine N-methyltransferase (PNMT) gene in order to target oncogene expression to adrenergic cell types. The retinal cultures contain a proliferation population of T-antigen-positive cells with a neuronal morphology that includes formation of extensive neuritic processes. We identified the cells as amacrine-derived neurons by immunofluorescence using the cell-specific monoclonal antibodies VC1.1 and HPC-1. The cells also express all three neurofilament subunits and GAP-43. These results indicate that CNS neurons can be transformed in transgenic animals to generate cultured cells with many properties of mature neurons.  相似文献   

11.
12.
Transgenic mice expressing stabilized beta-catenin in neural progenitors develop enlarged brains resulting from increased progenitor expansion. To more precisely define beta-catenin regulation of progenitor fate, we employed a conditional transgenic approach to delete the beta-catenin regulatory domain from neural progenitors, resulting in expression of stabilized protein from its endogenous promoter in these cells and their progeny. An increased fraction of transgenic cortical cells express the progenitor markers Nestin and LewisX, confirming a relative expansion of this population. Sustained beta-catenin activity expands RC2 and Pax6 expression in the developing cortex while postponing the onset of Tbr2 expression, suggesting a delay in maturation of radial glia into intermediate progenitors. Furthermore, transgenic cortical cells fail to either upregulate ErbB4 or develop a mitogenic response to epidermal growth factor, changes that normally accompany the acquisition of an intermediate fate. Likewise, transgenic brains do not develop a distinct subventricular zone or superficial cortical layers, and overexpression of stabilized beta-catenin by in utero electroporation caused a relative reduction of upper layer vs. lower layer cortical neurons, indicating that persistent beta-catenin activity interferes with the generation of progenitors responsible for the production of upper layer cortical neurons. Collectively, these findings demonstrate that beta-catenin functions to maintain the radial glial population, and suggest that downregulation of beta-catenin signaling may be critical to facilitate the transition to an intermediate progenitor phenotype.  相似文献   

13.
In mouse, sexual, aggressive, and social behaviors are influenced by G protein-coupled vomeronasal receptor signaling in two distinct subsets of vomeronasal sensory neurons (VSNs): apical and basal VSNs. In addition, G protein-signaling by these receptors inhibits developmental death of VSNs. We show that cells of the vomeronasal nerve express the retinoic acid (RA) synthesizing enzyme retinal dehydrogenase 2. Analyses of transgenic mice with VSNs expressing a dominant-negative RA receptor indicate that basal VSNs differ from apical VSNs with regard to a transient wave of RA-regulated and caspase 3-mediated cell death during the first postnatal week. Analyses of G-protein subunit deficient mice indicate that RA and vomeronasal receptor signaling combine to regulate postnatal expression of Kirrel-2 (Kin of IRRE-like), a cell adhesion molecule regulating neural activity-dependent formation of precise axonal projections in the main olfactory system. Collectively, the results indicate a novel connection between pre-synaptic RA receptor signaling and neural activity-dependent events that together regulate neuronal survival and maintenance of synaptic contacts.  相似文献   

14.
The neuroendocrine hypothalamus has been the object of intensive study in vivo and in tissue slices. However, using these models it is difficult to approach questions at the molecular and cellular level and to differentiate between direct effects and those mediated by other neurons. By using the regulatory domain of the rat gonadotropin-releasing hormone (GnRH) gene to target expression of the oncogene SV40 T antigen in transgenic mice, we have produced hypothalamic tumors which were cultured to produce clonal cell lines (GT1 cells). These cells express GnRH and many other neuronal markers, but do not express glial cell markers or other hypothalamic hormones. They have a distinctive neuronal phenotype, process the GnRH peptide accurately, and secrete GnRH in a pulsatile pattern. They respond to many neurotransmitters and neuromodulators including activin, norepinephrine, dopamine, nitric oxide, NMDA, and GABA, as well as GnRH itself. Thus, we have immortalized GnRH neurons by targeting oncogenesis to a defined population of neurons using the regulatory region of a gene which is expressed late in the differentiation of that cell lineage. The GT1 cell lines serve as an excellent model for molecular, pharmacological, electrophysiological, and biochemical investigations into the regulation of GnRH and the characteristics of a pure CNS neuronal population. Moreover, their derivation demonstrates the success of targeting tumorigenesis to specific differentiated neurons of the central nervous system in transgenic mice.  相似文献   

15.
16.
Peripherin, a neuronal intermediate filament protein associated with axonal spheroids in amyotrophic lateral sclerosis (ALS), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. To further clarify the selectivity and mechanism of peripherin-induced neuronal death, we analyzed the effects of peripherin overexpression in primary neuronal cultures. Peripherin overexpression led to the formation of cytoplasmic protein aggregates and caused the death not only of motor neurons, but also of dorsal root ganglion (DRG) neurons that were cultured from dissociated spinal cords of peripherin transgenic embryos. Apoptosis of DRG neurons containing peripherin aggregates was dependent on the proinflammatory central nervous system environment of spinal cultures, rich in activated microglia, and required TNF-alpha. This synergistic proapoptotic effect may contribute to neuronal selectivity in ALS.  相似文献   

17.
We generated transgenic mice bearing a tamoxifen-dependent Cre recombinase expressed under the control of the dopamine-β-hydroxylase promoter. By crossing to the ROSA26 reporter mice we show that tamoxifen-induced Cre recombinase in adult mice specifically activates β-galactosidase expression in differentiated noradrenergic neurons of the central and peripheral nervous system. Tamoxifen application in adult mice did not induce β-galactosidase activity in parasympathetic neurons that transiently express DBH during development. Thus, this transgenic mouse line represents a valuable tool to study gene function in mature noradrenergic neurons by conditional inactivation.  相似文献   

18.
Meis S  Stork O  Munsch T 《PloS one》2011,6(3):e18020
The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory.  相似文献   

19.
The versatility of stem cells has only recently been fully recognized. There is evidence that upon adoptive bone marrow (BM) transplantation (BMT), donor-derived cells can give rise to neuronal phenotypes in the brains of recipient mice. Yet only few cells with the characteristic shape of neurons were detected 1-6 mo post-BMT using transgenic or newborn mutant mice. To evaluate the potential of BM to generate mature neurons in adult C57BL/6 mice, we transferred the enhanced green fluorescent protein (GFP) gene into BM cells using a murine stem cell virus-based retroviral vector. Stable and high level long-term GFP expression was observed in mice transplanted with the transduced BM. Engraftment of GFP-expressing cells in the brain was monitored by intravital microscopy. In a long-term follow up of 15 mo post-BMT, fully developed Purkinje neurons were found to express GFP in both cerebellar hemispheres and in all chimeric mice. GFP-positive Purkinje cells were also detected in BM chimeras from transgenic mice that ubiquitously express GFP. Based on morphologic criteria and the expression of glutamic acid decarboxylase, the newly generated Purkinje cells were functional.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号