首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the ∼2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.  相似文献   

5.
6.
Full-term development has now been achieved in several mammalian species by transfer of somatic nuclei into enucleated oocytes [1, 2]. Although a high proportion of such reconstructed embryos can evolve until the blastocyst stage, only a few percent develop into live offspring, which often exhibit developmental abnormalities [3, 4]. Regulatory epigenetic markers such as DNA methylation are imposed on embryonic cells as normal development proceeds, creating differentiated cell states. Cloned embryos require the erasure of their somatic epigenetic markers so as to regain a totipotent state [5]. Here we report on differences in the dynamics of chromosome methylation between cloned and normal bovine embryos before implantation. We show that cloned embryos fail to reproduce distinguishable parental-chromosome methylation patterns after fusion and maintain their somatic pattern during subsequent stages, mainly by a highly reduced efficiency of the passive demethylation process. Surprisingly, chromosomes appear constantly undermethylated on euchromatin in morulae and blastocysts, while centromeric heterochromatin remains more methylated than that of normal embryos. We propose that the abnormal time-dependent methylation events spanning the preimplantation development of clones may significantly interfere with the epigenetic reprogramming, contributing to the high incidence of physiological anomalies occurring later during pregnancy or after clone birth.  相似文献   

7.
8.
9.
10.
Oct-4是一种哺乳动物早期胚胎中特异表达的转录因子,它与细胞多能性的维持有关.异源Oct-4基因在早期胚胎中的表达模式尚不明确.构建了一个以完整的牛Oct-4调控区指导GFP表达的转基因结构pOct-4(p)-GFP,通过单精子注射的方法将其导入猪、兔和小鼠的受精卵中,分析其在胚胎发育过程中的表达情况.结果显示:牛Oct-4启动子驱动的GFP基因在3个物种的2-细胞胚胎就已经开始表达,在囊胚期表达加强且只特异表达于内细胞团中,而不表达于滋养层.研究表明:牛的Oct-4启动子在其他物种中也具有表达活性,异源性Oct-4启动子在不同物种的早期胚胎中具有相似的表达模式.  相似文献   

11.
Embryos were collected non-surgically from the tip of one uterine horn of 23 lactating dairy cows on Day 7 of pregnancy. Embryos were classified on the basis of morphological criteria as normal (n = 12) or abnormal (n = 13). Abnormal embryos were further classified as cleavage stage (n = 9) or morula/blastocyst (n = 4). Cows producing an abnormal embryo did not differ in days post partum at oestrus, age or parity from cows producing a normal embryo. Cows with an abnormal morula/blastocyst also did not differ with respect to days post partum at oestrus from cows with abnormal cleavage-stage embryos but cows with an abnormal morula/blastocyst were significantly older and of greater parity than cows with an abnormal cleavage-stage embryo. Hepes-saline-PVP solution (30 ml) was initially infused into the uterine tip, mixed and then withdrawn with a syringe. Analysis of this fluid revealed that the concentrations of glucose, total protein, calcium, magnesium and potassium were significantly higher in the flushings from the uterus of cows with abnormal embryos than from cows with normal embryos and zinc and phosphorus tended to be higher in the uterine flushings of cows with abnormal embryos. Phosphorus, total protein, calcium and magnesium tended to be higher in the flushings from cows with abnormal morulae/blastocysts than from cows with abnormal cleavage-stage embryos. Plasma progesterone did not differ between cows with normal or abnormal embryos or in cows with abnormal morulae/blastocysts or abnormal cleavage-stage embryos. Most embryonic mortality therefore occurred before Day 5 (during cleavage) in these cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
Oct-4 expression in pluripotent cells of the rhesus monkey   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
17.
5-脱氧杂氮胞苷抑制小鼠附植前的胚胎发育   总被引:1,自引:0,他引:1  
DNA甲基化在哺乳动物发育过程中有关键作用.在小鼠附植前胚胎发育过程中,DNA甲基化一直处于动态变化过程中.通过将体外受精胚在5-AZA-CdR中持续培养,研究5-AZA-CdR对小鼠附植前胚胎发育的影响,为附植前胚胎发育机理的研究及5-AZA-CdR的毒副作用研究提供试验基础.从原核期加入不同浓度的5-AZA-CdR时,胚胎不能发育到桑椹胚(0.2 和1.0 μmol/L)和4-细胞胚(5.0 μmol/L);从2-细胞期加入时,胚胎阻滞于未致密化的8-细胞(0.2 和1.0 μmol/L)和3/4-细胞期(5.0 μmol/L);而当从4-细胞加入时,虽然胚胎能够发育到早期桑椹胚,但发育比例同对照相比显著降低(P < 0.05).进一步检测凋亡、基因组DNA甲基化和整体转录活性,结果显示,高浓度的5-AZA-CdR导致8-细胞和早期桑椹胚发生早期凋亡,而低浓度的5-AZA-CdR引起8-细胞和早期桑椹胚基因组DNA甲基化的降低和转录活性的降低,并且这种降低呈浓度依赖性.所以加入低浓度的5-AZA-CdR时,胚胎的DNA甲基化降低,引起转录活性的降低,进而导致胚胎发育的停滞.  相似文献   

18.
DNA甲基化与克隆动物的发育异常   总被引:3,自引:1,他引:2  
杨荣荣  李相运 《遗传》2007,29(9):1043-1048
通过核移植技术得到的大多数克隆动物在出生前就已经死亡, 只有极少数可以发育至妊娠期末或者存活至成年, 即使是存活下来的克隆动物也伴有不同程度的发育缺陷和表型异常。DNA甲基化是支配基因正常表达的一种重要的表观遗传修饰方式, 是调节基因组功能的重要手段, 在胚胎的正常发育过程中具有显著作用。通过对DNA甲基化模式的研究, 人们发现克隆动物中存在着异常的DNA甲基化状态, 而这些异常的DNA甲基化模式可能就是导致克隆胚早期死亡以及克隆动物发育畸形的主要原因。文章主要论述了DNA甲基化的作用, 克隆动物中异常的DNA甲基化模式, 以及造成克隆胚胎甲基化异常的原因等问题。  相似文献   

19.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号