首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila ventral furrow morphogenesis: a proteomic analysis   总被引:3,自引:0,他引:3  
Ventral furrow formation is a key morphogenetic event during Drosophila gastrulation that leads to the internalization of mesodermal precursors. While genetic analysis has revealed the genes involved in the specification of ventral furrow cells, few of the structural proteins that act as mediators of ventral cell behavior have been identified. A comparative proteomics approach employing difference gel electrophoresis was used to identify more than fifty proteins with altered abundance levels or isoform changes in ventralized versus lateralized embryos. Curiously, the majority of protein differences between these embryos appeared well before gastrulation, only a few protein changes coincided with gastrulation, suggesting that the ventral cells are primed for cell shape change. Three proteasome subunits were found to differ between ventralized and lateralized embryos. RNAi knockdown of these proteasome subunits and time-dependent difference-proteins caused ventral furrow defects, validating the role of these proteins in ventral furrow morphogenesis.  相似文献   

2.
Neurodegeneration is characterized by protein aggregate deposits and mitochondrial malfunction. Reduction in Tom40 (translocase of outer membrane 40) expression, a key subunit of the translocase of the outer mitochondrial membrane complex, led to accumulation of ubiquitin (Ub)-positive protein aggregates engulfed by Atg8a-positive membranes. Other macroautophagy markers were also abnormally accumulated. Autophagy was induced but the majority of autophagosomes failed to fuse with lysosomes when Tom40 was downregulated. In Tom40 RNAi tissues, autophagosome-like (AL) structures, often not sealed, were 10 times larger than starvation induced autophagosomes. Atg5 downregulation abolished Tom40 RNAi induced AL structure formation, but the Ub-positive aggregates remained, whereas knock down of Syx17, a gene required for autophagosome-lysosome fusion, led to the disappearance of giant AL structures and accumulation of small autophagosomes and phagophores near the Ub-positive aggregates. The protein aggregates contained many mitochondrial preproteins, cytosolic proteins, and proteasome subunits. Proteasome activity and ATP levels were reduced and the ROS levels was increased in Tom40 RNAi tissues. The simultaneous inhibition of proteasome activity, reduction in ATP production, and increase in ROS, but none of these conditions alone, can mimic the imbalanced proteostasis phenotypes observed in Tom40 RNAi cells. Knockdown of ref(2)P or ectopic expression of Pink1 and park greatly reduced aggregate formation in Tom40 RNAi tissues. In nerve tissues, reduction in Tom40 activity leads to aggregate formation and neurodegeneration. Rather than diminishing the neurodegenerative phenotypes, overexpression of Pink1 enhanced them. We proposed that defects in mitochondrial protein import may be the key to linking imbalanced proteostasis and mitochondrial defects.

Abbreviations: AL: autophagosome-like; Atg12: Autophagy-related 12; Atg14: Autophagy-related 14; Atg16: Autophagy-related 16; Atg5: Autophagy-related 5; Atg6: Autophagy-related 6; Atg8a: Autophagy-related 8a; Atg9: Autophagy-related 9; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; cDNA: complementary DNA; COX4: Cytochrome c oxidase subunit 4; CRISPR: clustered regularly interspaced short palindromic repeats; Cyt-c1: Cytochrome c1; DAPI: 4,6-diamidino-2-phenylindole dihydrochloride; Dcr-2: Dicer-2; FLP: Flippase recombination enzyme; FRT: FLP recombination target; GFP: green fluorescent protein; GO: gene ontology; gRNA: guide RNA; Hsp60: Heat shock protein 60A; HDAC6: Histone deacetylase 6; htt: huntingtin; Idh: Isocitrate dehydrogenase; IFA: immunofluorescence assay; Irp-1A: Iron regulatory protein 1A; kdn: knockdown; Marf: Mitochondrial assembly regulatory factor; MitoGFP: Mitochondrial-GFP; MS: mass spectrometry; MTPAP: mitochondrial poly(A) polymerase; Nmnat: Nicotinamide mononucleotide adenylyltransferase; OE: overexpression; Pink1/PINK1: PTEN-induced putative kinase 1; polyQ: polyglutamine; PRKN: parkin RBR E3 ubiquitin protein ligase; Prosα4: proteasome α4 subunit; Prosβ1: proteasome β1 subunit; Prosβ5: proteasome β5 subunit; Prosβ7: proteasome β7 subunit; ref(2)P: refractory to sigma P; RFP: red fluorescent protein; RNAi: RNA interference; ROS: reactive oxygen species; Rpn11: Regulatory particle non-ATPase 11; Rpt2: Regulatory particle triple-A ATPase 2; scu: scully; sicily: severe impairment of CI with lengthened youth; sesB: stress-sensitive B; Syx17: Syntaxin17; TEM: transmission electron microscopy; ttm50: tiny tim 50; Tom: translocase of the outer membrane; Tom20: translocase of outer membrane 20; Tom40: translocase of outer membrane 40; Tom70: translocase of outer membrane 70; UAS: upstream active sequence; Ub: ubiquitin; VNC: ventral nerve cord; ZFYVE1: zinc finger FYVE-type containing 1  相似文献   


3.
Mammalian WASP and N-WASP are involved in reorganization of the actin cytoskeleton through activation of the Arp2/3 complex and in regulation of cell motility or cell shape changes. In the present study, we identified WASP-interacting protein homologue (WIP)-1 in Caenorhabditis elegans. WIP-1 contains the domains and sequences conserved among mammalian WIP family proteins. Yeast two-hybrid analysis detected a physical interaction between WIP-1 and WSP-1, the sole homologue of WASP/N-WASP in C. elegans. Western analysis of embryo lysates showed that RNA interference (RNAi) treatment for wip-1 decreased levels of WSP-1 protein, and wsp-1(RNAi) treatment decreased levels of WIP-1 protein. However, wsp-1 mRNA levels were not decreased in wip-1(RNAi)-treated embryos, and wip-1 mRNA levels were not decreased in wsp-1(RNAi)-treated embryos. Furthermore, disruption of WIP-1 by RNAi resulted in embryonic lethality with morphologic defects in hypodermal cell migration, a process known as ventral enclosure. This phenotype was similar to that observed in RNAi experiments for wsp-1. Immunostaining showed that WIP-1 was expressed by migrating hypodermal cells, as was WSP-1. This expression during ventral enclosure was reduced in wip-1(RNAi)-treated embryos and wsp-1(RNAi)-treated embryos. Our results suggest that C. elegans WIP-1 may function in hypodermal cell migration during ventral enclosure by maintaining levels of WSP-1.  相似文献   

4.
The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and dynamics of furrow formation, we examined living Drosophila embryos using three-dimensional time-lapse microscopy. By injecting fluorescent markers that visualize cell outlines and nuclei, we monitored changes in cell shapes and nuclear positions. We find that the ventral furrow invaginates in two phases. During the first 'preparatory' phase, many prospective furrow cells in apparently random positions gradually begin to change shape, but the curvature of the epithelium hardly changes. In the second phase, when a critical number of cells have begun to change shape, the furrow suddenly invaginates. Our results suggest that furrow formation does not result from an ordered wave of cell shape changes, contrary to a model for epithelial invagination in which a wave of apical contractions causes invagination. Instead, it appears that cells change their shape independently, in a stochastic manner, and the sum of these individual changes alters the curvature of the whole epithelium.  相似文献   

5.
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.  相似文献   

6.
Cell shape changes during gastrulation in Drosophila   总被引:13,自引:0,他引:13  
The first morphogenetic movement during Drosophila development is the invagination of the mesoderm, an event that folds a one-layered epithelium into a multilayered structure. In this paper, we describe the shape changes and behaviour of the cells participating in this process and show how mutations that change cell fate affect this behaviour. We divide the formation of the mesodermal germ layer into two phases. During the first phase, the ventral epithelium folds into a tube by a series of concerted cell shape changes (ventral furrow formation). Based on the behaviour of cells in this phase, we conclude that the prospective mesoderm is not a homogeneous cell population, but consists of two subpopulations. Each subpopulation goes through a distinctive sequence of specific cell shape changes which together mediate the invagination of the ventral furrow. In the second phase, the invaginated tube of mesoderm loses its epithelial character, the mesoderm cells disperse, divide and then spread out along the ectoderm to form a single cell layer. To test how ventral furrow formation depends on cell fates in the mesoderm and in neighbouring cells we alter these fates genetically using maternal and zygotic mutations. These experiments show that some of the aspects of cell behaviour specific for ventral furrow cells are part of an autonomous differentiation programme. The force driving the invagination is generated within the region of the ventral furrow, with the lateral and dorsal cell populations contributing little or none of the force. Two known zygotic genes that are required for the formation of the mesoderm, twist and snail, are expressed in ventral furrow cells, and the correct execution of cell shape changes in the mesoderm depends on both. Finally, we show that the region where the ventral furrow forms is determined by the expression of mesoderm-specific genes, and not by mechanical or other epigenetic properties of the egg.  相似文献   

7.
Y T Ip  K Maggert    M Levine 《The EMBO journal》1994,13(24):5826-5834
  相似文献   

8.
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear. We have previously demonstrated that Drosophila FMRP (dFMRP) is required in early embryos for cleavage furrow formation. In an effort to identify new targets of dFMRP-dependent regulation and new effectors of cleavage furrow formation, we used two-dimensional difference gel electrophoresis and mass spectrometry to identify proteins that are misexpressed in dfmr1 mutant embryos. Of the 28 proteins identified, we have identified three subunits of the Chaperonin containing TCP-1 (CCT) complex as new direct targets of dFMRP-dependent regulation. Furthermore, we found that the septin Peanut, a known effector of cleavage, is a likely conserved substrate of fly CCT and is mislocalized in both cct and in dfmr1 mutant embryos. Based on these results we propose that dFMRP-dependent regulation of CCT subunits is required for cleavage furrow formation and that at least one of its substrates is affected in dfmr1 embryos suggesting that dFMRP-dependent regulation of CCT contributes to the cleavage furrow formation phenotype.  相似文献   

9.
The Drosophila gastrulation gene concertina encodes a G alpha-like protein   总被引:11,自引:0,他引:11  
S Parks  E Wieschaus 《Cell》1991,64(2):447-458
Gastrulation is a complex process requiring the coordination of cell shape changes and cell movements. In Drosophila, gastrulation begins immediately upon cellularization of the blastoderm stage embryo with the formation of the ventral furrow and posterior midgut. Cells that form both of these invaginations change their shape via apical constriction. Embryos from mothers homozygous for mutations in the concertina (cta) gene begin furrow formation by forming a zone of tightly apposed cells, constrict some cells, and then fail to constrict enough cells to form an organized groove. The cta gene has been cloned, and sequence analysis suggests that it encodes an alpha subunit of a G protein. G proteins have a role in cell-cell communication as mediators of signals between membrane-bound receptors and intracellular effectors. The phenotype of embryos from homozygous cta mothers suggests that the cta gene plays a role in a signal transduction pathway used during gastrulation.  相似文献   

10.
Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin‐1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin. Manduca sexta (MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl‐lobe adopts a novel orientation and contacts with the amino‐lobe. The structure revealed coordination of a single Fe3+ ion in the amino‐lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.  相似文献   

11.
X. Yuan  M. Miller    J. M. Belote 《Genetics》1996,144(1):147-157
Using the previously cloned proteasome α-type subunit gene Pros28.1, we screened a Drosophila melanogaster genomic library using reduced stringency conditions to identify closely related genes. Two new genes, Pros28.1A (map position 92F) and Pros28.1B (map position 60D7), showing high sequence similarity to Pros28.1, were identified and characterized. Pros28.1A encodes a protein with 74% amino acid identity to PROS28.1, while the Pros28.1B gene product is 58% identical. The Pros28.1B gene has two introns, located in exactly analogous positions as the two introns in Pros28.1, while the Pros28.1A gene lacks introns. Northern blot analysis reveals that the two new genes are expressed only in males, during the pupal and adult stages. Tissue-specific patterns of expression were examined using transgenic flies carrying lacz-fusion reporter genes. This analysis revealed that both genes are expressed in germiline cells during spermatogenesis, although their expression patterns differed. Pros28.1A expression is first detected at the primary spermatocyte stage and persists into the spermatid elongation phase of spermiogenesis, while Pros28.1B expression is prominent only during spermatid elongation. These genes represent the most striking example of cell-type-specific proteasome gene expression reported to date in any system and support the notion that there is structural and functional heterogeneity among proteasomes in metazoans.  相似文献   

12.
13.
The proteasome is a multicatalytic proteinase complex composed of nonidentical protein subunits. We have isolated a cDNA clone encoding the 35 kd proteasome subunit of Drosophila melanogaster and propose the designation PROS-35 for the corresponding gene. The deduced amino acid sequence reveals a region of striking homology to a tyrosine phosphorylation site of viral and cellular proteins suggesting a potential regulatory function for the 35 kd subunit within the proteinase complex. Immunocytochemical experiments reveal a tissue-dependent differential distribution of the proteasome between the nucleus and cytoplasm. In addition developmental analysis shows that the proteasome is highly expressed in the CNS of stage-16 embryos and in cardia, ventriculus and ovaries of adult flies. These data suggest a tissue- and development-dependent distribution of the proteasome in D. melanogaster.  相似文献   

14.
Cytohesin Arf-GEFs are conserved plasma membrane regulators. The sole Drosophila cytohesin, Steppke, restrains Rho1-dependent membrane cytoskeleton activity at the base of plasma membrane furrows of the syncytial embryo. By mass spectrometry, we identified a single major Steppke-interacting protein from syncytial embryos, which we named Stepping stone (Sstn). By sequence, Sstn seems to be a divergent homologue of the mammalian cytohesin adaptor FRMD4A. Our experiments supported this relationship. Specifically, heterophilic coiled-coil interactions linked Sstn and Steppke in vivo and in vitro, whereas a separate C-terminal region was required for Sstn localization to furrows. Sstn mutant and RNAi embryos displayed abnormal, Rho1-dependent membrane cytoskeleton expansion from the base of pseudocleavage and cellularization furrows, closely mimicking Steppke loss-of-function embryos. Elevating Sstn furrow levels had no effect on the steppke phenotype, but elevating Steppke furrow levels reversed the sstn phenotype, suggesting that Steppke acts downstream of Sstn and that additional mechanisms can recruit Steppke to furrows. Finally, the coiled-coil domain of Steppke was required for Sstn binding and in addition homodimerization, and its removal disrupted Steppke furrow localization and activity in vivo. Overall we propose that Sstn acts as a cytohesin adaptor that promotes Steppke activity for localized membrane cytoskeleton restraint in the syncytial Drosophila embryo.  相似文献   

15.
Neuburger PJ  Saville KJ  Zeng J  Smyth KA  Belote JM 《Genetics》2006,173(3):1377-1387
Two dominant temperature-sensitive (DTS) lethal mutants of Drosophila melanogaster are Pros26(1) and Prosbeta2(1), previously known as DTS5 and DTS7. Heterozygotes for either mutant die as pupae when raised at 29 degrees , but are normally viable and fertile at 25 degrees . Previous studies have identified these as missense mutations in the genes encoding the beta6 and beta2 subunits of the 20S proteasome, respectively. In an effort to isolate additional proteasome-related mutants a screen for dominant suppressors of Pros26(1) was carried out, resulting in the identification of Pros25(SuDTS) [originally called Su(DTS)], a missense mutation in the gene encoding the 20S proteasome alpha2 subunit. Pros25(SuDTS) acts in a dominant manner to rescue both Pros26(1) and Prosbeta2(1) from their DTS lethal phenotypes. Using an in vivo protein degradation assay it was shown that this suppression occurs by counteracting the dominant-negative effect of the DTS mutant on proteasome activity. Pros25(SuDTS) is a recessive polyphasic lethal at ambient temperatures. The effects of these mutants on larval neuroblast mitosis were also examined. While Prosbeta2(1) shows a modest increase in the number of defective mitotic figures, there were no defects seen with the other two mutants, other than slightly reduced mitotic indexes.  相似文献   

16.
Sequencing of the genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, and Bombyx mori provided an opportunity to examine the diversity and organization of genes encoding insect transferrins (Tsf) and ferritins. Information obtained from the genomes significantly advances our knowledge of these major players in insect iron metabolism and complements the results of molecular studies on their temporal, spatial, and inducible expression pattern and regulatory mechanisms conducted in diverse insect species. Analysis of genes encoding new members of the Tsf family and non-secreted ferritin subunits allows making preliminary hypotheses about their possible functions and opens possibilities to study lesser-known aspects of insect iron homeostasis. Proteomic and gene expression studies that followed the whole genome sequencing quickly contribute to defining or better understanding of the important and diverse biological roles of Tsf and ferritin, particularly their involvement in insect's defenses against oxidative stress and infection.  相似文献   

17.
The article provides a biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo. Ventral furrow formation is the first large-scale morphogenetic movement in the fly embryo. It involves deformation of a uniform cellular monolayer formed following cellularisation, and has therefore long been used as a simple system in which to explore the role of mechanics in force generation. Here we use a quantitative framework to carry out a systematic perturbation analysis to determine the role of each of the active forces observed. The analysis confirms that ventral furrow invagination arises from a combination of apical constriction and apical-basal shortening forces in the mesoderm, together with a combination of ectodermal forces. We show that the mesodermal forces are crucial for invagination: the loss of apical constriction leads to a loss of the furrow, while the mesodermal radial shortening forces are the primary cause of the internalisation of the future mesoderm as the furrow rises. Ectodermal forces play a minor but significant role in furrow formation: without ectodermal forces the furrow is slower to form, does not close properly and has an aberrant morphology. Nevertheless, despite changes in the active mesodermal and ectodermal forces lead to changes in the timing and extent of furrow, invagination is eventually achieved in most cases, implying that the system is robust to perturbation and therefore over-determined.  相似文献   

18.
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow.  相似文献   

19.
It is clear that de novo protein synthesis has an important function in synaptic transmission and plasticity. A substantial amount of work has shown that mRNA translation in the hippocampus is spatially controlled and that dendritic protein synthesis is required for different forms of long‐term synaptic plasticity. More recently, several studies have highlighted a function for protein degradation by the ubiquitin proteasome system in synaptic plasticity. These observations suggest that changes in synaptic transmission involve extensive regulation of the synaptic proteome. Here, we review experimental data supporting the idea that protein homeostasis is a regulatory motif for synaptic plasticity.  相似文献   

20.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号