首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reappraisal of Bateman's classic study of intrasexual selection   总被引:1,自引:0,他引:1  
Bateman's (1948) study showing greater variances in number of mates and reproductive success in male than female Drosophila melanogaster is a foundational paper in sexual selection. Here we show for the first time that his methods had flaws, including the elimination of genetic variance, sampling biases, miscalculations of fitness variances, statistical pseudo-replication, and selective presentation of data. We conclude that Bateman's results are unreliable, his conclusions are questionable, and his observed variances are similar to those expected under random mating. Despite our analysis, we do not intend this article as a criticism of Bateman; he accomplished his work without modern computational tools, and his approach was groundbreaking emphasizing the significance of fitness variance for sexual selection. However, this reanalysis has implications for what counts as evidence for sexual selection and we believe that our concerns should be of interest to contemporary students of sexual selection. We call for repetitions of Bateman's study using modern statistical and molecular methods.  相似文献   

2.
Summary .  We develop sample size formulas for studies aiming to test mean differences between a treatment and control group when all-or-none nonadherence (noncompliance) and selection bias are expected. Recent work by Fay, Halloran, and Follmann (2007, Biometrics 63, 465–474) addressed the increased variances within groups defined by treatment assignment when nonadherence occurs, compared to the scenario of full adherence, under the assumption of no selection bias. In this article, we extend the authors' approach to allow selection bias in the form of systematic differences in means and variances among latent adherence subgroups. We illustrate the approach by performing sample size calculations to plan clinical trials with and without pilot adherence data. Sample size formulas and tests for normally distributed outcomes are also developed in a Web Appendix that account for uncertainty of estimates from external or internal pilot data.  相似文献   

3.
Daye ZJ  Chen J  Li H 《Biometrics》2012,68(1):316-326
We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis.  相似文献   

4.
Following the Fisherian approach, the expression for additive genetic variance is derived in a single gene system through a regression equation in two variables which are used to obtain the additive and dominance variances. The approach is extended to two genes with restricted linkage and inbreeding. It was brought out that additive genetic variance defined essentially for one gene does not extendper se to multi-gene systems.  相似文献   

5.
A. Ruiz  A. Barbadilla 《Genetics》1995,139(1):445-455
Using Cockerham's approach of orthogonal scales, we develop genetic models for the effect of an arbitrary number of multiallelic quantitative trait loci (QTLs) or neutral marker loci (NMLs) upon any number of quantitative traits. These models allow the unbiased estimation of the contributions of a set of marker loci to the additive and dominance variances and covariances among traits in a random mating population. The method has been applied to an analysis of allozyme and quantitative data from the European oyster. The contribution of a set of marker loci may either be real, when the markers are actually QTLs, or apparent, when they are NMLs that are in linkage disequilibrium with hidden QTLs. Our results show that the additive and dominance variances contributed by a set of NMLs are always minimum estimates of the corresponding variances contributed by the associated QTLs. In contrast, the apparent contribution of the NMLs to the additive and dominance covariances between two traits may be larger than, equal to or lower than the actual contributions of the QTLs. We also derive an expression for the expected variance explained by the correlation between a quantitative trait and multilocus heterozygosity. This correlation explains only a part of the genetic variance contributed by the markers, i.e., in general, a combination of additive and dominance variances and, thus, provides only very limited information relative to the method supplied here.  相似文献   

6.
A general approach to repeated measures analysis described in MCGILCHRIST and CULLIS (1991) is extended to general linear models in which there is a homogeneous correlation structure such as a stationary process but the variances are heterogeneous over time. Models for the variance heterogeneity are suggested and results are applied to data examining the effect of enzootic pneumonia on young pigs.  相似文献   

7.
Sano A  Tachida H 《Genetics》2005,169(3):1687-1697
We consider the Wright-Fisher model with exponential population growth and investigate effects of population growth on the shape of genealogy and the distributions of several test statistics of neutrality. In the limiting case as the population grows rapidly, the rapid-growth-limit genealogy is characterized. We obtained approximate expressions for expectations and variances of test statistics in the rapid-growth-limit genealogy and star genealogy. The distributions in the star genealogy are narrower than those in the cases of the simulated and rapid-growth-limit genealogies. The expectations and variances of the test statistics are monotone decreasing functions of the time length of the expansion, and the higher power of R(2) against population growth is suggested to be due to their smaller variances rather than to change of the expectations. We also investigated by simulation how quickly the distributions of test statistics approach those of the rapid-growth-limit genealogy.  相似文献   

8.
In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. for Gaussian responses. Nonlinear functions are modelled by first or second order random walk priors with locally varying variances or smoothing parameters. Estimation is fully Bayesian and uses latent utility representations of binary regression models for efficient block sampling from the full conditionals of nonlinear functions.  相似文献   

9.
The logistic transformation, originally suggested by Johnson (1949), is applied to analyze responses that are restricted to a finite interval (e.g. (0,1)), so-called bounded outcome scores. Bounded outcome scores often have a non-standard distribution, e.g. J- or U-shaped, precluding classical parametric statistical approaches for analysis. Applying the logistic transformation on a normally distributed random variable, gives rise to a logit-normal (LN) distribution. This distribution can take a variety of shapes on (0,1). Further, the model can be extended to correct for (baseline) covariates. Therefore, the method could be useful for comparative clinical trials. Bounded outcomes can be found in many research areas, e.g. drug compliance research, quality-of-life studies, and pain (and pain relief) studies using visual analog scores, but all these scores can attain the boundary values 0 or 1. A natural extension of the above approach is therefore to assume a latent score on 0,1) having a LN distribution. Two cases are considered: (a) the bounded outcome score is a proportion where the true probabilities have a LN distribution on (0,1) and (b) the bounded outcome score on [0,1] is a coarsened version of a latent score with a LN distribution on (0,1). We also allow the variance (on the transformed scale) to depend on treatment. The usefulness of our approach for comparative clinical trials will be assessed in this paper. It turns out to be important to distinguish the case of equal and unequal variances. For a bounded outcome score of the second type and with equal variances, our approach comes close to ordinal probit (OP) regression. However, ignoring the inequality of variances can lead to highly biased parameter estimates. A simulation study compares the performance of our approach with the two-sample Wilcoxon test and with OP regression. Finally, the different methods are illustrated on two data sets.  相似文献   

10.
Huggins R 《Biometrics》2006,62(3):684-690
A semiparametric partially linear model for the size of an open population is proposed and inference is conducted using weighted martingale estimating equations. This extends a previous nonparametric approach to modeling capture-recapture data for open populations with frequent capture occasions. Analytic expressions for the large sample variances are derived and these are confirmed in a simulation study. The method is illustrated on monthly penguin banding data collected over 6 years.  相似文献   

11.
Attributable risk estimation from matched case-control data   总被引:2,自引:0,他引:2  
S J Kuritz  J R Landis 《Biometrics》1988,44(2):355-367
A methodology is proposed for obtaining summary estimators, variances, and confidence intervals for attributable risk measures from data obtained through a case-control study design where one or more controls have been matched to each case. The sampling design for obtaining these data is conceptualized as a simple random sample of cases being equivalent to a simple random sample of matched sets. By combining information across the strata determined by the matched sets, this approach provides all of the benefits associated with the Mantel-Haenszel procedure for the estimators of attributable risk among the exposed and population attributable risk. Asymptotic variances are derived under the assumption that the frequencies of the unique response patterns follow the multinomial distribution. Simulation results indicate that these methods fare very well with respect to bias and coverage probability.  相似文献   

12.
Phylogenetic comparative methods that incorporate intraspecific variability are relatively new and, so far, not especially widely used in empirical studies. In the present short article we will describe a new Bayesian method for fitting evolutionary models to comparative data that incorporates intraspecific variability. This method differs from an existing likelihood-based approach in that it requires no a priori inference about species means and variances; rather it takes phenotypic values from individuals and a phylogenetic tree as input, and then samples species means and variances, along with the parameters of the evolutionary model, from their joint posterior probability distribution. One of the most novel and intriguing attributes of this approach is that jointly sampling the species means with the evolutionary model parameters means that the model and tree can influence our estimates of species mean trait values, not just the reverse. In the present implementation, we first apply this method to the most widely used evolutionary model for continuously valued phenotypic trait data (Brownian motion). However, the general approach has broad applicability, which we illustrate by also fitting the λ model, another simple model for quantitative trait evolution on a phylogeny. We test our approach via simulation and by analyzing two empirical datasets obtained from the literature. Finally, we have implemented the methods described herein in a new function for the R statistical computing environment, and this function will be distributed as part of the 'phytools' R library.  相似文献   

13.
Qin F 《Biophysical journal》2004,86(3):1488-1501
Patch-clamp recording provides an unprecedented means for study of detailed kinetics of ion channels at the single molecule level. Analysis of the recordings often begins with idealization of noisy recordings into continuous dwell-time sequences. Success of an analysis is contingent on accuracy of the idealization. I present here a statistical procedure based on hidden Markov modeling and k-means segmentation. The approach assumes a Markov scheme involving discrete conformational transitions for the kinetics of the channel and a white background noise for contamination of the observations. The idealization is sought to maximize a posteriori probability of the state sequence corresponding to the samples. The approach constitutes two fundamental steps. First, given a model, the Viterbi algorithm is applied to determine the most likely state sequence. With the resultant idealization, the model parameters are then empirically refined. The transition probabilities are calculated from the state sequences, and the current amplitudes and noise variances are determined from the ensemble means and variances of those samples belonging to the same conductance classes. The two steps are iterated until the likelihood is maximized. In practice, the algorithm converges rapidly, taking only a few iterations. Because the noise is taken into explicit account, it allows for a low signal/noise ratio, and consequently a relatively high bandwidth. The approach is applicable to data containing subconductance levels or multiple channels and permits state-dependent noises. Examples are given to elucidate its performance and practical applicability.  相似文献   

14.
We evaluated the performance of GBLUP including dominance genetic effect (GBLUP-D) by estimating variances and predicting genetic merits in a computer simulation and 2 actual traits (T4 and T5) in pigs. In simulation data, GBLUP-D explained more than 50% of dominance genetic variance. Moreover, GBLUP-D yielded estimated total genetic effects over 1.2% more accurate than those yielded by GBLUP. In particular, when the dominance genetic variance was large, the accuracy could be substantially improved by increasing the number of markers. The dominance genetic variances in T4 and T5 accounted for 9.6% and 6.3% of the phenotypic variances, respectively. Estimates of such small dominance genetic variances contributed little to the improvement of the accuracies of estimated total genetic effects. In both simulation and pig data, there were nearly no differences in the estimates of additive genetic effects or their variance between GBLUP-D and GBLUP. Therefore, we conclude GBLUP-D is a feasible approach to improve genetic performance in crossbred populations with large dominance genetic variation and identify mating systems with good combining ability.  相似文献   

15.
When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation.  相似文献   

16.
We introduce a novel approach for describing patterns of HIV genetic variation using regression modeling techniques. Parameters are defined for describing genetic variation within and between viral populations by generalizing Simpson's index of diversity. Regression models are specified for these variation parameters and the generalized estimating equation framework is used for estimating both the regression parameters and their corresponding variances. Conditions are described under which the usual asymptotic approximations to the distribution of the estimators are met. This approach provides a formal statistical framework for testing hypotheses regarding the changing patterns of HIV genetic variation over time within an infected patient. The application of these methods for testing biologically relevant hypotheses concerning HIV genetic variation is demonstrated in an example using sequence data from a subset of patients from the Multicenter AIDS Cohort Study.  相似文献   

17.
We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance–covariance matrices ( G ). Large‐sample theory shows that maximum‐likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G . This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G , and of functions of G . We refer to this as the REML‐MVN method. This has been implemented in the mixed‐model program WOMBAT. Estimates of sampling variances from REML‐MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20‐dimensional data set for Drosophila wings. REML‐MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best‐estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML‐MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest.  相似文献   

18.
Analysis of variance components in gene expression data   总被引:5,自引:0,他引:5  
MOTIVATION: A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets. The first data set involved estimation of technical variances for pooled control and pooled treated RNA samples. The variance components included between-array, and two nested within-array variances: between-section (the upper- and lower-sections of the array are replicates) and within-section (two adjacent spots of the same gene are printed within each section). The second experiment was conducted on four different weeks. Each week there were reference and test samples with a dye-flip replicate in two hybridization days. The variance components included week-to-week, animal-to-animal and between-array and within-array variances. RESULTS: We applied the linear mixed-effects model to quantify different sources of variation. In the first data set, we found that the between-array variance is greater than the between-section variance, which, in turn, is greater than the within-section variance. In the second data set, for the reference samples, the week-to-week variance is larger than the between-array variance, which, in turn, is slightly larger than the within-array variance. For the test samples, the week-to-week variance has the largest variation. The animal-to-animal variance is slightly larger than the between-array and within-array variances. However, in a gene-by-gene analysis, the animal-to-animal variance is smaller than the between-array variance in four out of five housekeeping genes. In summary, the largest variation observed is the week-to-week effect. Another important source of variability is the animal-to-animal variation. Finally, we describe the use of variance-component estimates to determine optimal numbers of animals, arrays per animal and sections per array in planning microarray experiments.  相似文献   

19.
The log response ratio, lnRR, is the most frequently used effect size statistic for meta-analysis in ecology. However, often missing standard deviations (SDs) prevent estimation of the sampling variance of lnRR. We propose new methods to deal with missing SDs via a weighted average coefficient of variation (CV) estimated from studies in the dataset that do report SDs. Across a suite of simulated conditions, we find that using the average CV to estimate sampling variances for all observations, regardless of missingness, performs with minimal bias. Surprisingly, even with missing SDs, this simple method outperforms the conventional approach (basing each effect size on its individual study-specific CV) with complete data. This is because the conventional method ultimately yields less precise estimates of the sampling variances than using the pooled CV from multiple studies. Our approach is broadly applicable and can be implemented in all meta-analyses of lnRR, regardless of ‘missingness’.  相似文献   

20.
The covariance function approach with an iterative two-stage algorithm of LIU et al. (2000) was applied to estimate parameters for the Polish Black-and-White dairy population based on a sample of 338 808 test day records for milk, fat, and protein yields. A multiple trait sire model was used to estimate covariances of lactation stages. A third-order Legendre polynomial was subsequently fitted to the estimated (co)variances to derive (co)variances of random regression coefficients for both additive genetic and permanent environment effects. Daily and 305-day heritability estimates obtained are consistent with several studies which used both fixed and random regression test day models. Genetic correlations between any two days in milk (DIM) of the same lactation as well as genetic correlations between the same DIM of two lactations were within a biologically acceptable range. It was shown that the applied estimation procedure can utilise very large data sets and give plausible estimates of (co)variance components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号