首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
  总被引:6,自引:0,他引:6  
Simultaneous inference is a common problem in many areas of application. If multiple null hypotheses are tested simultaneously, the probability of rejecting erroneously at least one of them increases beyond the pre-specified significance level. Simultaneous inference procedures have to be used which adjust for multiplicity and thus control the overall type I error rate. In this paper we describe simultaneous inference procedures in general parametric models, where the experimental questions are specified through a linear combination of elemental model parameters. The framework described here is quite general and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalized linear models, linear mixed effects models, the Cox model, robust linear models, etc. Several examples using a variety of different statistical models illustrate the breadth of the results. For the analyses we use the R add-on package multcomp, which provides a convenient interface to the general approach adopted here.  相似文献   

3.
    
In a typical clinical trial, there are one or two primary endpoints, and a few secondary endpoints. When at least one primary endpoint achieves statistical significance, there is considerable interest in using results for the secondary endpoints to enhance characterization of the treatment effect. Because multiple endpoints are involved, regulators may require that the familywise type I error rate be controlled at a pre-set level. This requirement can be achieved by using \"gatekeeping\" methods. However, existing methods suffer from logical oddities such as allowing results for secondary endpoint(s) to impact the likelihood of success for the primary endpoint(s). We propose a novel and easy-to-implement gatekeeping procedure that is devoid of such deficiencies. A real data example and simulation results are used to illustrate efficiency gains of our method relative to existing methods.  相似文献   

4.
Quantiles of the multivariate t distribution with ρ = 0 are tabulated. Some applications are discussed.  相似文献   

5.
6.
    
The Newman-Keuls (NK) procedure for testing all pairwise comparisons among a set of treatment means, introduced by Newman (1939) and in a slightly different form by Keuls (1952) was proposed as a reasonable way to alleviate the inflation of error rates when a large number of means are compared. It was proposed before the concepts of different types of multiple error rates were introduced by Tukey (1952a, b; 1953). Although it was popular in the 1950s and 1960s, once control of the familywise error rate (FWER) was accepted generally as an appropriate criterion in multiple testing, and it was realized that the NK procedure does not control the FWER at the nominal level at which it is performed, the procedure gradually fell out of favor. Recently, a more liberal criterion, control of the false discovery rate (FDR), has been proposed as more appropriate in some situations than FWER control. This paper notes that the NK procedure and a nonparametric extension controls the FWER within any set of homogeneous treatments. It proves that the extended procedure controls the FDR when there are well-separated clusters of homogeneous means and between-cluster test statistics are independent, and extensive simulation provides strong evidence that the original procedure controls the FDR under the same conditions and some dependent conditions when the clusters are not well-separated. Thus, the test has two desirable error-controlling properties, providing a compromise between FDR control with no subgroup FWER control and global FWER control. Yekutieli (2002) developed an FDR-controlling procedure for testing all pairwise differences among means, without any FWER-controlling criteria when there is more than one cluster. The empirica example in Yekutieli's paper was used to compare the Benjamini-Hochberg (1995) method with apparent FDR control in this context, Yekutieli's proposed method with proven FDR control, the Newman-Keuls method that controls FWER within equal clusters with apparent FDR control, and several methods that control FWER globally. The Newman-Keuls is shown to be intermediate in number of rejections to the FWER-controlling methods and the FDR-controlling methods in this example, although it is not always more conservative than the other FDR-controlling methods.  相似文献   

7.
    
Lee and Spurrier (1995) present one‐sided and two‐sided confidence interval procedures for making successive comparisons between ordered treatments. Their procedures have important applications for problems where the treatments can be assumed to satisfy a simple ordering, such as for a sequence of increasing dose‐levels of a drug. The two‐sided procedure provides both upper and lower bounds on the differences between successive treatments, whereas the one‐sided procedure only provides lower bounds on these differences. However, the one‐sided procedure allows sharper inferences regarding which treatments can be declared to be better than their previous ones. In this paper we apply the results obtained in Hayter , Miwa , and Liu (2000) to develop a new procedure which combines the good aspects of both the one‐sided and the two‐sided procedures. This new procedure maintains the inferential sensitivity of the one‐sided procedure while also providing both upper and lower bounds on the differences between successive treatments. Some new critical points are needed which are tabulated for the balanced case where the sample sizes are all equal. The application of the new procedure is illustrated with an example.  相似文献   

8.
    
In the past many multiple comparison procedure were difficult to perform. Usually, such procedures can be traced back to studentized multiple contrast tests. Numerical difficulties restricted the use of the exact procedures to simple, commonly balanced, designs. Conservative approximations or simulation based approaches have been used in the general cases. However, new efforts and results in the past few years have led to fast and efficient computations of the underlying multidimensional integrals. Inferences for any finite set of linear functions of normal means are now numerically feasible. These include all‐pairwise comparisons, comparisons with a control (including dose‐response contrasts), multiple comparison with the best, etc. The article applies the numerical progress on multiple comparisons procedures for common balanced and unbalanced designs within the general linear model.  相似文献   

9.
    
There are many situations where it is desired to make simultaneous tests or give simultaneous confidence intervals for linear combinations (contrasts) of population or treatment means. Somerville (1997, 1999) developed algorithms for calculating the critical values for a large class of simultaneous tests and simultaneous confidence intervals. Fortran 90 and SAS‐IML batch programs and interactive programs were developed. These programs calculate the critical values for 15 different simultaneous confidence interval procedures (and the corresponding simultaneous tests) and for arbitrary procedures where the user specifies a combination of one and two sided contrasts. The programs can also be used to obtain the constants for “step‐down” testing of multiple hypotheses. This paper gives examples of the use of the algorithms and programs and illustrates their versatility and generality. The designs need not be balanced, multiple covariates may be present and there may be many missing values. The use of multiple regression and dummy variables to obtain the required variance covariance matrix is illustrated. Under weak normality assumptions the methods are “exact” and make the use of approximate methods or “simulation” unnecessary.  相似文献   

10.
    
DALAL  S. R. 《Biometrika》1978,65(1):221-225
  相似文献   

11.
    
Kwong KS  Cheung SH  Chan WS 《Biometrics》2004,60(2):491-498
In clinical studies, multiple superiority/equivalence testing procedures can be applied to classify a new treatment as superior, equivalent (same therapeutic effect), or inferior to each set of standard treatments. Previous stepwise approaches (Dunnett and Tamhane, 1997, Statistics in Medicine16, 2489-2506; Kwong, 2001, Journal of Statistical Planning and Inference 97, 359-366) are only appropriate for balanced designs. Unfortunately, the construction of similar tests for unbalanced designs is far more complex, with two major difficulties: (i) the ordering of test statistics for superiority may not be the same as the ordering of test statistics for equivalence; and (ii) the correlation structure of the test statistics is not equi-correlated but product-correlated. In this article, we seek to develop a two-stage testing procedure for unbalanced designs, which are very popular in clinical experiments. This procedure is a combination of step-up and single-step testing procedures, while the familywise error rate is proved to be controlled at a designated level. Furthermore, a simulation study is conducted to compare the average powers of the proposed procedure to those of the single-step procedure. In addition, a clinical example is provided to illustrate the application of the new procedure.  相似文献   

12.
    
The problem of finding exact simultaneous confidence bounds for comparing simple linear regression lines for two treatments with a simple linear regression line for the control over a fixed interval is considered. The assumption that errors are iid normal random is considered. It is assumed that the design matrices for the two treatments are equal and the design matrix for the control has the same number of copies of each distinct row of the design matrix for the treatments. The method is based on a pivotal quantity that can be expressed as a function of four t variables. The probability point depends on the size of an angle associated with the interval. We present probability points for various sample sizes and angles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
    
ODEN  ANDERS 《Biometrika》1973,60(2):339-343
  相似文献   

14.
A comparison of two modified Bonferroni procedures   总被引:2,自引:0,他引:2  
HOMMEL  GERHARD 《Biometrika》1989,76(3):624-625
  相似文献   

15.
    
This paper focuses on inferences about the overall treatment effect in meta-analysis with normally distributed responses based on the concepts of generalized inference. A refined generalized pivotal quantity based on t distribution is presented and simulation study shows that it can provide confidence intervals with satisfactory coverage probabilities and perform hypothesis testing with satisfactory type-I error control at very small sample sizes.  相似文献   

16.
    
Yang Y  Degruttola V 《Biometrics》2008,64(2):329-336
Summary .   Identifying genetic mutations that cause clinical resistance to antiretroviral drugs requires adjustment for potential confounders, such as the number of active drugs in a HIV-infected patient's regimen other than the one of interest. Motivated by this problem, we investigated resampling-based methods to test equal mean response across multiple groups defined by HIV genotype, after adjustment for covariates. We consider construction of test statistics and their null distributions under two types of model: parametric and semiparametric. The covariate function is explicitly specified in the parametric but not in the semiparametric approach. The parametric approach is more precise when models are correctly specified, but suffer from bias when they are not; the semiparametric approach is more robust to model misspecification, but may be less efficient. To help preserve type I error while also improving power in both approaches, we propose resampling approaches based on matching of observations with similar covariate values. Matching reduces the impact of model misspecification as well as imprecision in estimation. These methods are evaluated via simulation studies and applied to a data set that combines results from a variety of clinical studies of salvage regimens. Our focus is on relating HIV genotype to viral susceptibility to abacavir after adjustment for the number of active antiretroviral drugs (excluding abacavir) in the patient's regimen.  相似文献   

17.
18.
    
L. Finos  A. Farcomeni 《Biometrics》2011,67(1):174-181
Summary We show a novel approach for k‐FWER control which does not involve any correction, but only testing the hypotheses along a (possibly data‐driven) order until a suitable number of p‐values are found above the uncorrected α level. p‐values can arise from any linear model in a parametric or nonparametric setting. The approach is not only very simple and computationally undemanding, but also the data‐driven order enhances power when the sample size is small (and also when k and/or the number of tests is large). We illustrate the method on an original study about gene discovery in multiple sclerosis, in which were involved a small number of couples of twins, discordant by disease. The methods are implemented in an R package (someKfwer ), freely available on CRAN.  相似文献   

19.
    
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号