首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Park S  Zhang H  Jones AD  Nixon BT 《Biochemistry》2002,41(36):10934-10941
X-ray crystal structures suggest very different dimeric states for the inactive and active forms of the two-component receiver domain of Sinorhizobium meliloti DctD, a sigma(54)-dependent AAA+ ATPase. Moreover, the receiver domain in crystals grown from unphosphorylated protein is refractory to phosphorylation whereas solution protein is fully phosphorylatable, and equilibrium analytical ultracentrifugation data are consistent with solution dimers for both phosphorylated and unphosphorylated forms of the protein. Here we report biochemical data consistent with the presence of multiple dimeric conformations in the inactive and active states, and evidence for significant change in the dimeric state upon activation by phosphorylation or binding of Mg(2+) and BeF(3)(-).  相似文献   

2.
3.
4.
5.
Crystal structure of a functional dimer of the PhoQ sensor domain   总被引:1,自引:0,他引:1  
The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg2+, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.  相似文献   

6.
BACKGROUND: Fibroblastic growth factors (FGFs) are a family of cytokines involved in regulation of cell growth, differentiation and chemotaxis in a variety of tissue types. High-affinity FGF receptors (FGFRs) are transmembrane proteins that consist of three extracellular immunoglobulin-like domains, a transmembrane helix and an intracellular protein tyrosine kinase signalling domain. FGFRs are activated through ligand-dependent dimerization that allows trans-autophosphorylation of the tyrosine kinase domains. Heparin or heparin-like molecules, such as heparan sulphate proteoglycans, bind to both FGFs and FGFRs and are required for FGF signal transduction. At present no structure of the ternary complex for FGFR, FGF and heparin exists. RESULTS: We have used the type-1 interleukin-1 receptor-interleukin-1 beta complex crystal structure, in which both the ligand and the receptor are homologous to those of the FGF-FGFR pair, to identify potential interactions in the FGFR-heparin-FGF ternary complex. A key feature of the modelled complex is the 'electrostatic sandwich' that is formed between the positively charged surfaces of FGF and the receptor, with the negatively charged heparin captured in between. The ternary complex places limits on the range of likely modes of receptor dimerization: one of five different dimeric receptor complexes built from the ternary complex correlates best with the experimental data. CONCLUSIONS: The ternary complex of FGFR, FGF and heparin, derived on the basis of the homologous interleukin-1 receptor complex, is in agreement with much of the published experimental data, as is the dimeric receptor complex (FGFR-heparin-FGF)2. This work suggests that the FGF interactions seen in crystal structures, which have previously been used to predict the mode of FGF dimerization, might not be relevant to the biologically active dimeric FGFR-heparin-FGF complex.  相似文献   

7.
8.
9.
Cyclic diguanylate (c-di-GMP) is a global regulator that modulates pathogen virulence and biofilm formation in bacteria. Although a bioinformatic study revealed that PilZ domain proteins are the long-sought c-di-GMP binding proteins, the mechanism by which c-di-GMP regulates them is uncertain. Pseudomonas putida PP4397 is one such protein that contains YcgR-N and PilZ domains and the apo-PP4397 structure was solved earlier by the Joint Center for Structural Genomics. We determined the crystal structure of holo-PP4397 and found that two intercalated c-di-GMPs fit into the junction of its YcgR-N and PilZ domains. Moreover, c-di-GMP binding induces PP4397 to undergo a dimer-to-monomer transition. Interestingly, another PilZ domain protein, VCA0042, binds to a single molecule of c-di-GMP, and both its apo and holo forms are dimeric. Mutational studies and the additional crystal structure of holo-VCA0042 (L135R) showed that the Arg122 residue of PP4397 is crucial for the recognition of two molecules of c-di-GMP. Thus, PilZ domain proteins exhibit different c-di-GMP binding stoichiometry and quaternary structure, and these differences are expected to play a role in generating diverse forms of c-di-GMP-mediated regulation.  相似文献   

10.
The response regulator PhoP is part of the PhoQ/PhoP two-component system involved in responses to depletion of extracellular Mg(2+). Here, we report the crystal structures of the receiver domain of Escherichia coli PhoP determined in the absence and presence of the phosphoryl analog beryllofluoride. In the presence of beryllofluoride, the active receiver domain forms a twofold symmetric dimer similar to that seen in structures of other regulatory domains from the OmpR/PhoB family, providing further evidence that members of this family utilize a common mode of dimerization in the active state. In the absence of activating agents, the PhoP receiver domain crystallizes with a similar structure, consistent with the previous observation that high concentrations can promote an active state of PhoP independent of phosphorylation.  相似文献   

11.
l-Gulonate 3-dehydrogenase (GDH) is a bifunctional dimeric protein that functions not only as an NAD+-dependent enzyme in the uronate cycle but also as a taxon-specific λ-crystallin in rabbit lens. Here we report the first crystal structure of GDH in both apo form and NADH-bound holo form. The GDH protomer consists of two structural domains: the N-terminal domain with a Rossmann fold and the C-terminal domain with a novel helical fold. In the N-terminal domain of the NADH-bound structure, we identified 11 coenzyme-binding residues and found 2 distinct side-chain conformers of Ser124, which is a putative coenzyme/substrate-binding residue. A structural comparison between apo form and holo form and a mutagenesis study with E97Q mutant suggest an induced-fit mechanism upon coenzyme binding; coenzyme binding induces a conformational change in the coenzyme-binding residues Glu97 and Ser124 to switch their activation state from resting to active, which is required for the subsequent substrate recruitment. Subunit dimerization is mediated by numerous intersubunit interactions, including 22 hydrogen bonds and 104 residue pairs of van der Waals interactions, of which those between two cognate C-terminal domains are predominant. From a structure/sequence comparison within GDH homologues, a much greater degree of interprotomer interactions (both polar and hydrophobic) in the rabbit GDH would contribute to its higher thermostability, which may be relevant to the other function of this enzyme as λ-crystallin, a constitutive structural protein in rabbit lens. The present crystal structures and amino acid mutagenesis studies assigned the role of active-site residues: catalytic base for His145 and substrate binding for Ser124, Cys125, Asn196, and Arg231. Notably, Arg231 participates in substrate binding from the other subunit of the GDH dimer, indicating the functional significance of the dimeric state. Proper orientation of the substrate-binding residues for catalysis is likely to be maintained by an interprotomer hydrogen-bonding network of residues Asn196, Gln199, and Arg231, suggesting a network-based substrate recognition of GDH.  相似文献   

12.
Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.  相似文献   

13.
The two-component signal transduction pathway widespread in prokaryotes, fungi, molds, and some plants involves an elaborate phosphorelay cascade. Rcp1 is the phosphate receiver module in a two-component system controlling the light response of cyanobacteria Synechocystis sp. via cyanobacterial phytochrome Cph1, which recognizes Rcp1 and transfers its phosphoryl group to an aspartate residue in response to light. Here we describe the crystal structure of Rcp1 refined to a crystallographic R-factor of 18.8% at a resolution of 1.9 A. The structure reveals a tightly associated homodimer with monomers comprised of doubly wound five-stranded parallel beta-sheets forming a single-domain protein homologous with the N-terminal activator domain of other response regulators (e.g., chemotaxis protein CheY). The three-dimensional structure of Rcp1 appears consistent with the conserved activation mechanism of phosphate receiver proteins, although in this case, the C-terminal half of its regulatory domain, which undergoes structural changes upon phosphorylation, contributes to the dimerization interface. The involvement of the residues undergoing phosphorylation-induced conformational changes at the dimeric interface suggests that dimerization of Rcp1 may be regulated by phosphorylation, which could affect the interaction of Rcp1 with downstream target molecules.  相似文献   

14.
Hastings CA  Lee SY  Cho HS  Yan D  Kustu S  Wemmer DE 《Biochemistry》2003,42(30):9081-9090
Bacterial receiver domains mediate the cellular response to environmental changes through conformational changes induced by phosphorylation of a conserved aspartate residue. While the structures of several activated receiver domains have recently been determined, there is substantial variation in the conformational changes occurring upon activation. Here we present the high-resolution structure of the activated NtrC receiver domain (BeF(3)(-)-NtrC(r) complex) determined using NMR data, including residual dipolar couplings, yielding a family of structures with a backbone rmsd of 0.57 +/- 0.08 A, which is compared with the previous lower-resolution structure of the phosphorylated protein. Both phosphorylation and beryllofluoride addition induce a shift in register and an axial rotation of alpha-helix 4. In this high-resolution structure, we are able to observe a concerted change in the positions of Thr82 and Tyr101; this correlated change in two conserved residues (termed Y-T coupling) has been considered a general feature of the conformational change in receiver domains upon activation. In NtrC, this correlated side chain shift, leading to the helix reorientation, is distinctly different from the smaller reorganization seen in other activated receiver domains, and involves numerous other residues which do not participate in conformational changes seen in the other systems. Titration of the activated receiver domain with peptides from the NtrC ATPase domain provides direct evidence for interactions on the rearranged face of the receiver domain, which are likely to be responsible for enabling assembly into the active aggregate. Analysis of the active structure also suggests that His84 may play a role in controlling the phosphate hydrolysis rate.  相似文献   

15.
16.
In prokaryotes, the principal signal transduction systems operating at the level of protein phosphorylation are the two-component systems. A number of hybrid histidine protein kinases in these systems contain several receiver domains, however, the function of these receiver domains is unknown. The RodK kinase in Myxococcus xanthus has an unconventional domain composition with a putative N-terminal sensor domain followed by a histidine kinase domain and three receiver domains. RodK is essential for the spatial coupling of the two morphogenetic events underlying fruiting body formation in M. xanthus, aggregation of cells into nascent fruiting bodies and the subsequent sporulation of these cells. RodK kinase activity is indispensable for RodK activity. By systematically substituting the conserved, phosphorylatable aspartate residues in the three receiver domains, genetic evidence is provided that each receiver domain is important for RodK function and that each receiver domain has a distinct function, which depends on phosphorylation. Biochemical analyses provided indirect evidence for phosphotransfer from the RodK kinase domain to the third receiver domain. This is the first example of a hybrid histidine protein kinase in which four signalling domains have been shown to be required for full activity.  相似文献   

17.
The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.  相似文献   

18.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

19.
Bacterial response regulators (RRs) can regulate the expression of genes that confer antibiotic resistance; they contain a receiver and an effector domain and their ability to bind DNA is based on the dimerization state. This is triggered by phosphorylation of the receiver domain by a kinase. However, even in the absence of phosphorylation RRs can exist in equilibrium between monomers and dimers with phosphorylation shifting the equilibrium toward the dimer form. We have determined the crystal structure of the unphosphorylated dimeric BaeR from Escherichia coli. The dimer interface is formed by a domain swap at the receiver domain. In comparison with the unphosphorylated dimeric PhoP from Mycobacterium tuberculosis, BaeR displays an asymmetry of the effector domains.  相似文献   

20.
The adaptor protein APS is a substrate of the insulin receptor and couples receptor activation with phosphorylation of Cbl to facilitate glucose uptake. The interaction with the activated insulin receptor is mediated by the Src homology 2 (SH2) domain of APS. Here, we present the crystal structure of the APS SH2 domain in complex with the phosphorylated tyrosine kinase domain of the insulin receptor. The structure reveals a novel dimeric configuration of the APS SH2 domain, wherein the C-terminal half of each protomer is structurally divergent from conventional, monomeric SH2 domains. The APS SH2 dimer engages two kinase molecules, with pTyr-1158 of the kinase activation loop bound in the canonical phosphotyrosine binding pocket of the SH2 domain and a second phosphotyrosine, pTyr-1162, coordinated by two lysine residues in beta strand D. This structure provides a molecular visualization of one of the initial downstream recruitment events following insulin activation of its dimeric receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号