首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.  相似文献   

2.
The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data showed that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization.  相似文献   

3.
Mitochondrial uncoupling protein 2 (UCP2) plays an important role in regulating energy metabolism. We previously reported that UCP2 expression in steatotic livers is increased which leads to diminished hepatic ATP stores and renders steatotic hepatocytes vulnerable to ischemic damage. In this study, reagents that inhibit the production of ATP were used to mimic an ischemic state in the liver in order to investigate the effects of decreased intracellular ATP levels on UCP2 expression in a murine hepatocyte cell line (HEP6-16). Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an oxidative phosphorylation uncoupler, was found to decrease intracellular ATP levels in a dose- and time-dependent manner. Relatively high concentrations of FCCP from 8 to 80 microM were required to reduce the intracellular concentration of ATP. The inhibitory effect of FCCP on intracellular ATP was significantly potentiated by 2-deoxy-D-glucose, an inhibitor of glycolysis that when administered alone had no negative effect on cellular ATP levels in mouse hepatocytes. Decreased intracellular ATP levels were accompanied by lower UCP2 mRNA expression. Upon removal of FCCP and/or 2-deoxy-D-glucose and reculture with normal medium, ATP and UCP2 mRNA levels returned to normal within a few hours. Mitochondrial membrane potential in HEP6-16 cells was dissipated by 80 microM FCCP but not 8 microM FCCP, suggesting that the downregulation of UCP2 expression by FCCP was not related to mitochondrial potential changes. Consequently, the in vitro manipulation of ATP stores is consistent with the in vivo observations associated with ischemia/reperfusion injury.  相似文献   

4.
Mitochondrial uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis. We explored the neuroprotective role of UCP4 with its stable overexpression in SH-SY5Y cells, after exposure to either MPP+ or dopamine to induce ATP deficiency and oxidative stress. Cells overexpressing UCP4 proliferated faster in normal cultures and after exposure to MPP+ and dopamine. Differentiated UCP4-overexpressing cells survived better when exposed to MPP+ with decreased LDH release. Contrary to the mild uncoupling hypothesis, UCP4 overexpression resulted in increased absolute ATP levels (with ADP/ATP ratios similar to those of controls under normal conditions and ADP supplementation) associated with increased respiration rate. Under MPP+ toxicity, UCP4 overexpression preserved ATP levels and mitochondrial membrane potential (MMP) and reduced oxidative stress; the preserved ATP level was not due to increased glycolysis. Under MPP+ toxicity, the induction of UCP2 expression in vector controls was absent in UCP4-overexpressing cells, suggesting that UCP4 may compensate for UCP2 expression. UCP4 function does not seem to adhere to the mild uncoupling hypothesis in its neuroprotective mechanisms under oxidative stress and ATP deficiency. UCP4 overexpression increases cell survival by inducing oxidative phosphorylation, preserving ATP synthesis and MMP, and reducing oxidative stress.  相似文献   

5.
6.
The impact of uncoupling protein (UCP) 1, UCP3 and UCP3s expressed in yeast on oxidative phosphorylation, membrane potential and H+ transport is determined. Intracellular ATP synthesis is inhibited by UCP3, much more than by UCP1, while similar levels of UCP3 and UCP1 exist in the mitochondrial fractions. Measurements of membrane potential and H+ efflux in isolated mitochondria show that, different from UCP1, with UCP3 and UCP3s there is a priori a preponderant uncoupling not inhibited by GDP. The results are interpreted to show that UCP3 and UCP3s in yeast mitochondria are in a deranged state causing uncontrolled uncoupling, which does not represent their physiological function.  相似文献   

7.
The mitochondrial uncoupling protein-2: current status   总被引:6,自引:0,他引:6  
In eukaryotic cells ATP is generated by oxidative phosphorylation, an energetic coupling at the mitochondrial level. The oxidative reactions occurring in the respiratory chain generate an electrochemical proton gradient on both sides of the inner membrane. This gradient is used by the ATPsynthase to phosphorylate ADP into ATP. The coupling between respiration and ADP phosphorylation is only partial in brown adipose tissue (BAT) mitochondria, where the uncoupling protein UCP1 causes a reentry of protons into the matrix and abolishes the electrochemical proton gradient. The liberated energy is then dissipated as heat and ATP synthesis is reduced. This property was for a long time considered as an exception and specific to the non-shivering thermogenesis found in BAT. The recent cloning of new UCPs expressed in other tissues revealed the importance of this kind of regulation of respiratory control in metabolism and energy expenditure. The newly characterised UCPs are potential targets for obesity treatment drugs which could favour energy expenditure and diminish the metabolic efficiency. In 1997, we cloned UCP2 and proposed a role for this new uncoupling protein in diet-induced thermogenesis, obesity, hyperinsulinemia, fever and resting metabolic rate. Currently, an abundant literature deals with UCP2, but its biochemical and physiological functions and regulation remain unclear. The present review reports the status of our knowledge of this mitochondrial carrier in terms of sequence, activity, tissue distribution and regulation of expression. The putative physiological roles of UCP2 will be introduced and discussed.  相似文献   

8.
We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP. In addition, sensitivity to linoleic acid was similar in potato and in control yeast mitochondria, suggesting that uncoupling occurring in potato mitochondria was because of a UCP-independent proton diffusion process. By contrast, yeast mitochondria expressing StUCP exhibited a higher sensitivity to free fatty acids than those from the control yeast and especially a marked proton conductance in the presence of low amounts of linoleic acid. However, this fatty acid-induced uncoupling was also insensitive to nucleotides. Altogether, these results suggest that uncoupling of oxidative phosphorylation and heat production cannot be the dominant feature of StUCP expressed in native potato tissues. However, it could play a role in preventing reactive oxygen species production as proposed for mammalian UCP2 and UCP3.  相似文献   

9.
Mitochondrial uncoupling,ROS generation and cardioprotection   总被引:1,自引:0,他引:1  
Susana Cadenas 《BBA》2018,1859(9):940-950
Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase —a process known as proton leak— generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis.  相似文献   

10.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

11.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

12.
We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.  相似文献   

13.
During the last decade, the possibility that 'mild' uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even 'mild uncoupling', must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.  相似文献   

14.
We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST.  相似文献   

15.
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.  相似文献   

16.
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.  相似文献   

17.
The uncoupling proteins (UCPs) are thought to uncouple oxidative phosphorylation in the mitochondria and thus generate heat. One of the UCP isoforms, UCP3, is abundantly expressed in skeletal muscle, the major thermogenic tissue in humans. UCP3 has been overexpressed at high levels in yeast systems, where it leads to the uncoupling of cell respiration, suggesting that UCP3 may indeed be capable of dissipating the mitochondrial proton gradient. This effect, however, was recently shown to be a consequence of the high level of expression and incorrect folding of the protein and not to its intrinsic uncoupling activity. In the present study, we investigated the properties of UCP3 overexpressed in a relevant mammalian host system such as the rat myoblast L6 cell line. UCP3 was expressed in relatively low levels (< 1 microg x mg(-1) membrane protein) with the help of an adenovirus vector. Immunofluorescence microscopy of transduced L6 cells showed that UCP3 was expressed in more than 90% of the cells and that its staining pattern was characteristic for mitochondrial localization. The oxygen consumption of L6 cells under nonphosphorylating conditions increased concomitantly with the levels of UCP3 expression. However, uncoupling was associated with an inhibition of the maximal respiratory capacity of mitochondria and was not affected by purine nucleotides and free fatty acids. Moreover, recombinant UCP3 was resistant to Triton X-100 extraction under conditions that fully solubilize membrane bound proteins. Thus, UCP3 can be uniformly overexpressed in the mitochondria of a relevant muscle-derived cell line resulting in the expected increase of mitochondrial uncoupling. However, our data suggest that the protein is present in an incompetent conformation.  相似文献   

18.
19.
The recently discovered uncoupling protein 3 (UCP3) is highly homologous to the mitochondrialinner membrane protein UCP1, which generates heat by uncoupling the respiratory chainfrom oxidative phosphorylation. The thermogenic function of UCP1 protects against cold andregulates the energy balance in rodents. We review in vitro studies investigating the uncouplingactivity of UCP3 and in vivo studies, which address UCP3 gene expression in brown adiposetissue and skeletal muscle under various metabolic conditions. The data presented are, for themost, consistent with an uncoupling role for UCP3 in regulatory thermogenesis. We alsodiscuss mediators of UCP3 regulation and propose a potential role for intracellular fatty acidsin the mechanism of UCP3 modulation. Finally, we hypothesize a role for UCP3 in themetabolic adaptation of the mitochondria to the degradation of fatty acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号