首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The joint is a discrete unit that consists of cartilage, bone, tendon and ligaments. These tissues are all composed of an extracellular matrix made of collagens, proteoglycans and specialised glycoproteins that are actively synthesised, precisely assembled and subsequently degraded by the resident connective tissue cells. A balance is maintained between matrix synthesis and degradation in healthy adult tissues. Different classes of proteinases play a part in connective tissue turnover in which active proteinases can cleave matrix protein during resorption, although the proteinase that predominates varies between different tissues and diseases. The metalloproteinases are potent enzymes that, once activated, degrade connective tissue and are inhibited by tissue inhibitors of metalloproteinases (TIMPs); the balance between active matrix metalloproteinases and TIMPs determines, in many tissues, the extent of extracellular matrix degradation. The serine proteinases are involved in the initiation of activation cascades and some, such as elastase, can directly degrade the matrix. Cysteine proteinases are responsible for the breakdown of collagen in bone following the removal of the osteoid layer and the attachment of osteoclasts to the exposed bone surface. Various growth factors increase the synthesis of matrix and proteinase inhibitors, whereas cytokines (alone or in combination) can inhibit matrix synthesis and stimulate proteinase production and matrix destruction.  相似文献   

2.
Human foreskin fibroblasts were cultured for up to 6 weeks in medium supplemented with ascorbic acid. During this time, the cells produced an extensive new connective tissue matrix in which the accumulated collagen (mostly type I) amounted to about 0.25 mg/10(6) cells. The matrix was highly differentiated as shown by complete processing of procollagen to collagen alpha-chains and covalent crosslinking of the collagen. Alignment of collagen fibrils occurred as the fibrils were deposited between cells, and binding of adjacent fibrils to the cell surface appeared to hold the fibrils in register. Groups of aligned fibrils were subdivided into bundles by cell-surface folds. If beta-aminopropionitrile was added to the medium, collagen crosslinking was inhibited, but not collagen synthesis or fibril bundle organization. If ascorbic acid was omitted from the culture medium, the extensive new connective tissue matrix was not produced. Our results indicate that fibroblasts in long-term cultures supplemented with ascorbic acid produce a connective tissue matrix with many in vivo-like properties including supermolecular organization of collagen.  相似文献   

3.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Extracellular matrix degradation in fetal membranes leading to its rupture is coupled to myometrial activity and cervical ripening during human normal labor. Mechanisms which modulate collagen degradation in amniochorion during labor have not been elucidated. Initial characterization of the effect of different blood compartments on connective tissue degradation in amniochorion during human labor was explored. Amniochorion explants were stimulated with plasma of maternal venous blood, umbilical cord blood or placental blood, obtained from women with pregnancies at term, with or without labor. MMP-2 and MMP-9 activities were quantified in conditioned media by gelatin-zymography as an index of connective tissue degradation. Collagen content was measured in tissue explants and collagen fibrils distribution was examined by electron microscopy. Placental plasma from term pregnancies, with or without labor, is enriched with soluble signals that enhance the in vitro MMP-9 production by amniochorion. Accompanying ultrastructural distortion of collagen fibers and demonstration of collagen degradation fragments confirmed induction of extracellular matrix degradation. Control experiments in which MMP-9 activity was blocked with TIMP-1 resulted in inhibition of all the above mentioned changes. These results suggest that placental intervillous space is a functional compartment in which mediators capable to induce collagen degradation in amniochorion are selectively expressed during human labor.  相似文献   

5.
Electron microscopy and electron histochemistry (exposure to acid phosphatase) were used to study the mechanisms of extracellular degradation of collagen in the liver during involution of experimental cirrhosis. The following results were obtained: extracellular secretion of lysosomal enzymes from hepatocytes and connective tissue cells takes place in liver cirrhosis and its involution; partial hepatectomy during liver cirrhosis stimulates the activity of acid phosphatase in the liver cells; the lysosomal enzymes, excreted from hepatocytes and connective tissue cells by means of exocytosis take an active part in collagen extracellular degradation in vivo; at initial stages of cirrhosis involution extracellular degradation of collagen in the liver occurs at the expense of lysosomal enzymes from hepatocytes and connective tissue cells. Subsequently, as cirrhosis regresses, the principal role in the lysis of collagen gradually passes to lysosomal enzymes of hepatocytes.  相似文献   

6.
THE FIBROBLAST AND WOUND REPAIR   总被引:30,自引:0,他引:30  
This review of connective tissue repair has attempted to place into historical perspective information obtained by newer approaches. The literature review is incomplete, as it was unfortunately necessary to leave many interesting studies out of the discussion. Emphasis has been placed upon what is known of the inflammatory response, the fine structure of the connective tissue cells in healing wounds and with correlated chemical findings in these tissues. An optimal inflammatory response appears to be an important, rapid, non-specific stimulus for fibroplasia. It is not clear how inflammation exerts this effect. The inflammatory cells and their enzymes markedly alter the extracellular matrix of injured tissue. The matrix of connective tissue may itself participate in the control of its own synthesis and degradation. It is possible that modification of this environment by injury and/or inflammation with ensuing matrix alteration may provide a stimulus for cell migration and protein synthesis. The converse may also be true, that is, a given level of matrix concentration may have an inhibitory effect upon the connective tissue cells. The inter-relationships between the connective tissue matrix and the cells, and the possibilities of feedback mechanisms playing a role in maintaining a balance between these two are important areas for future investigation. In this regard, additional questions may be asked concerning the role of the fibroblast in remodelling and degradation of connective tissue. It is not yet clear how important a balance between collagenolytic enzymes and the solubility states, or stability, of collagen are in each connective tissue. It will be interesting to determine which cells make collagenolytic and/or proteolytic enzymes upon appropriate stimulus. It is possible to distinguish between the fibroblast and the monocyte, or potential macrophage with the electron microscope. The rough endoplasmic reticulum with its large numbers of attached ribosomes is extensively developed in the fibroblast in contrast to the monocyte. The endoplasmic reticulum sequesters collagen precursors and other secretory proteins for transport either directly to the extracellular space, as appears to be the case for collagen, or to the Golgi complex as is the case for other exportable proteins. Collagen precursors are secreted into the environment and are not shed from within the cell surface. A number of cytoplasmic alterations have been described for fibroblasts and other cells during various pathological states. The significance of these alterations is not clear. It will be important to distinguish between specific and non-specific responses to injury, if these alterations are to aid us in understanding the various cellular responses. The source of the fibroblasts in granulation tissue appears to be mesenchymal cells from adjacent tissues rather than blood-borne precursors. Although contact inhibition can be demonstrated in vitro, it is not clear how important this phenomenon is in vivo, nor are the reasons for the ability of some tissues to heal by regeneration rather than by scar tissue formation understood. These and many other questions remain to be answered. The healing wound is multifaceted and presents the opportunity for systematic investigation into the problems of cell proliferation, cell and matrix interactions, and protein synthesis in vivo and it also can help to further our understanding of the ubiquitous fibroblast and its complex extracellular matrix.  相似文献   

7.
Local growth, invasion, and metastasis of malignancies of the head and neck involve extensive degradation and remodeling of the underlying, collagen-rich connective tissue. Urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 is an endocytic receptor recently shown to play a critical role in the uptake and intracellular degradation of collagen by mesenchymal cells. As a step toward determining the putative function of uPARAP/Endo180 in head and neck cancer progression, we used immunohistochemistry to determine the expression of this collagen internalization receptor in 112 human squamous cell carcinomas and 19 normal or tumor-adjacent head and neck tissue samples from the tongue, gingiva, cheek, tonsils, palate, floor of mouth, larynx, maxillary sinus, upper jaw, nasopharynx/nasal cavity, and lymph nodes. Specificity of detection was verified by staining of serial sections with two different monoclonal antibodies against two non-overlapping epitopes on uPARAP/Endo180 and by the use of isotype-matched non-immune antibodies. uPARAP/Endo180 expression was observed in stromal fibroblast-like, vimentin-positive cells. Furthermore, expression of the collagen internalization receptor was increased in tumor stroma compared with tumor-adjacent connective tissue or normal submucosal connective tissue and was most prominent in poorly differentiated tumors. These data suggest that uPARAP/Endo180 participates in the connective tissue destruction during head and neck squamous cell carcinoma progression by mediating cellular uptake and lysosomal degradation of collagen.  相似文献   

8.
Bacterial dental plaque is considered to be the main cause of periodontal diseases, but progression of the disease is also related to the host inflammatory response. The earliest affected tissue is the gingiva, but the specific mechanisms involved in the onset of this condition remain unclear. Frequently, collagen degradation is pointed as the main marker of periodontal disease progression, but the organization of the fibers in the gingival tissue is still unknown. The aim of the present study was to investigate the gingival extracellular matrix in a model of ligature-induced periodontal disease. Analysis of the microbiota indicated a progressive increase in the ratio of Gram-negative/Gram-positive microorganisms. There was no difference in the organization of reticulin fibers next to the epithelial basement membrane, whereas the arrangement of collagen fibers in the gingival connective tissue was significantly affected. Animals with inflammation presented a reduction of 35% in the total area occupied by collagen fibers. However, these fibers were thicker and more densely packed. These alterations involve type I, type III and type VI collagens as determined by immunohistochemistry. The results demonstrated the occurrence of marked reorganization of the gingival extracellular matrix in response to the inflammatory process, indicating a new paradigm in the periodontal disease progression: collagen degradation and fibers thickening, simultaneously.  相似文献   

9.
The observations included the connective tissue laminae originating from samples of the buccal mucous membrane in leukoplakia. Following fixation and dehydration the materials were embedded in Epon 812, and the electronograms for the evaluation were obtained with the use of a Tesla BS 500 electron microscope. The macrophages were encountered close to the basal membrane in the proper lamina. The space between the basal cells and the macrophages was filled with the connective tissue matrix and numerous collagen fibres, as well as the fibroblast cells. Numerous mast cells, characterized by a specific activity, were noted. Additionally, the proper lamina contained few nerve fibres, usually nonmyelinated. The vascular bed was normal. The electronograms in leukoplakia revealed an active synthesis of the connective tissue matrix and collagen fibres. The marked activity of the mast cells was manifested by a high number of cells containing a relatively differentiated amount of granulation. This might be related to the chronic character of the disease. A significant activity of particular elements of the proper lamina, i.e. the cellular elements, collagen fibres and the connective tissue matrix appears to be characteristic of leukoplakia.  相似文献   

10.
To investigate the role of tumor necrosis factor-alpha (TNF alpha) in advanced collagenolysis and degradation of connective tissue components in preterm parturition, the effects of human recombinant TNF alpha (hrTNF alpha) on the production of matrix metalloproteinase 1 (MMP-1)/tissue collagenase, MMP-3/stromelysin, tissue inhibitor of metalloproteinases (TIMP), urokinase type-plasminogen activator (uPa) and prostaglandin (PG) E2 in human chorionic cells were examined in vitro. Human chorionic cells, but not amniotic cells, were found to respond to macrophage-conditioned medium (contains mainly interleukin 1) to produce MMP-1 and MMP-3. This indicated that the chorionic cell is one of the MMP-producing cells of fetal membranes. When confluent chorionic cells were treated with hrTNF alpha, the production of MMP-1 and MMP-3 as well as of uPa and PGE2 was greatly increased in a dose-dependent manner. In contrast, the production of TIMP was suppressed by hrTNF alpha. These results suggested that TNF alpha may participate in destruction of collagen and other connective tissue matrix components of fetal membranes and in promotion of uterine contractility in preterm parturition with intraamniotic infection.  相似文献   

11.
Homeostasis of the extracellular matrix (ECM) of tissues is regulated by controlling deposition and degradation of ECM proteins. The breakdown of ECM is essential in blastocyst implantation and embryonic development, tissue morphogenesis, menstrual shedding, bone formation, tissue resorption after delivery, and tumor growth and invasion. TGF-beta family members are one of the classes of proteins that actively participate in the homeostasis of ECM. Here, we report on the effect of lefty, a novel member of the TGF-beta family, on the homeostasis of extracellular matrix in a fibrosarcoma model. Fibroblastic cells forced to express lefty by retroviral transduction lost their ability to deposit collagen in vivo. This event was associated with down-regulation of the steady-state level of connective tissue growth factor that induces collagen type I mRNA. In addition, lefty transduction significantly decreased collagen type I mRNA expression and simultaneously increased collagenolytic, gelatinolytic, elastolytic, and caseinolytic activities in vivo by the transduced fibroblasts. These findings provide a new insight on the actions of lefty and suggest that this cytokine plays an active role in remodeling of the extracellular matrix in vivo.  相似文献   

12.
F Ascencio  T Wadstr?m 《Microbios》1991,66(266):27-37
125I-labelled connective tissue protein binding to cells of Aeromonas hydrophila, A. caviae, and A. sobria strains isolated from diseased fish, was correlated with the Aeromonas protease degradation of 125I-labelled collagen types I and IV, fibronectin and laminin, immobilized on tissue culture microtitre plates. An inverse relation between 125I-labelled connective tissue protein binding to cells of Aeromonas strains and proteolytic degradation of immobilized connective tissue proteins by Aeromonas proteases was established. Inhibition of the Aeromonas proteolytic activity by protease inhibitors enhances the 125I-labelled connective tissue protein binding to cells of Aeromonas hydrophila strains. Culture conditions were found to influence both expression of proteolytic activity and binding properties.  相似文献   

13.
The distribution co-activity of thiol proteinases (cathepsin B and cathepsin H) was investigated in normal and cirrhotic liver by the electron-cytochemical method. The reaction product was localized on lysosomes of Kupffer's cells, hepatocytes, endotheliocytes and fibroblasts. Extracellular activity of thiol proteinases was revealed in normal as well as in cirrhotic liver. The reaction product was situated on collagen fibrils near hepatocytes and connective tissue cells. The results evidence that besides participation in intracellular degradation of different proteins, thiol proteinases are secreted by hepatocytes and connective tissue cells of the liver to the intercellular space and can take part in extracellular collagen resorption.  相似文献   

14.
Elastic tissue hyperplasia, revealed by means of histological, immunocytochemical and ultra-structural methods, appeared as a prominent change in surgical liver biopsies taken from 61 patients with schistosomal periportal and septal fibrosis. Such hyperplasia was absent in experimental murine schistosomiasis, including mice with "pipe-stem" fibrosis. Displaced connective tissue cells in periportal areas, such as smooth muscle cells, more frequently observed in human material, could be the site of excessive elastin synthesis, and could explain the differences observed in human and experimental materials. Elastic tissue, sometimes represented by its microfibrillar components, also appeared to be more condensed in areas of matrix (collagen) degradation, suggesting a participation of this tissue in the remodelling of the extracellular matrix. By its rectratile properties elastic tissue hyperplasia in hepatic schistosomiasis can cause vascular narrowing and thus play a role in the pathogenesis of portal hypertension.  相似文献   

15.
Collagen XVI, by structural analogy a member of the FACIT- (fibril-associated collagens with interrupted triple helices) family of collagens, is described as a minor collagen component of connective tissues. Collagen XVI is expressed in various cells and tissues without known occurrence of splice variants or isoforms. For skin and cartilage tissues its suprastructure is known. Presumably, there it acts as an adaptor protein connecting and organizing large fibrillar networks and thus modulates integrity and stability of the extracellular matrix (ECM).Collagen XVI is produced by myofibroblasts in the normal intestine and its synthesis is increased in the inflamed bowel wall where myofibroblasts develop increased numbers of focal adhesion contacts on collagen XVI. Consequently, recruitment of α1 integrin into the focal adhesions at the tip of the cells is induced followed by increased cell spreading on collagen XVI. This presumably adds to the maintenance of myofibroblasts in the inflamed intestinal regions and thus promotes fibrotic responses of the tissue. Notably, α1/α2 integrins interact with collagen XVI through an α1/α2β1 integrin binding site located in the COL 1–3 domains.Collagen XVI may act as a substrate for adhesion and invasion of connective tissue tumor cells. In glioblastoma it induces tumor invasiveness by modification of the β1-integrin activation pattern. Thus, altering the cell–matrix interaction through collagen XVI might be a molecular mechanism to further augment the invasive phenotype of glioma cells. In this line, in oral squamous cell carcinoma collagen XVI expression is induced which results in an upregulation of Kindlin-1 followed by an increased interaction with beta1-integrin. Consequently, collagen XVI induces a proliferative tumor phenotype by promoting an early S-phase entry.In summary, collagen XVI plays a decisive role in the interaction of connective tissue cells with their ECM, which is impaired in pathological situations. Alteration of tissue location and expression level of collagen XVI appears to promote tumorigenesis and to perpetuate inflammatory reactions.  相似文献   

16.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax.  相似文献   

17.
A rat subcutaneous implantation model was used to evaluate the in vivo degradation and tissue response of cholecyst-derived extracellular matrix (CEM). This response was compared to that of glutaraldehyde (GA) cross-linked CEM and porcine heart valve (HV), which are designated as GAxCEM and GAxHV, respectively. Tissue composition, inflammatory cell distribution, and angiogenesis at the implant site were quantified using stereological parameters, thickness (Ta), volume fraction (Vv), surface density (Sv), length density (Lv), and radius of diffusion (Rdiff). CEM was completely infiltrated with host tissue at 21 days and resorbed by 63 days. GAxCEM was also infiltrated with host tissue, while GAxHV matrix was impermeable to host tissue infiltration. Both GAxCEM and GAxHV retained their scaffold integrity until 63 days with no apparent degradation. A fibrous tissue of thickness <52 mum, rich in collagen and vasculature, surrounded all scaffolds, and from 21 to 63 days the fibrous tissue showed maturation with a significant increase in their fibrocyte content. No signs of acute inflammatory response were observed in the study period for any of the scaffolds, while the chronic inflammatory response was predominated with macrophages for all scaffolds except for CEM at 63 days. A higher degree of giant cell formation was observed with GA cross-linked scaffolds. From 21 to 63 days, lymphocytic response decreased for CEM, while it increased significantly for GAxHV. Angiogenesis/neo-vascularization was uniform for CEM (reaching the core), significantly lower for GAxCEM within the implant area as compared to CEM, while restricted to the exterior of GAxHV matrix. In summary, CEM was a fast degrading scaffold that induced a transitional inflammatory response accompanied by gradual resorption and replacement by host connective tissue as compared to the very slow degrading GA cross-linked controls, GAxCEM and GAxHV, which caused a sustained chronic inflammatory response and remained at the site of implantation until the end of the study period of 63 days.  相似文献   

18.
Recent data suggest that gelatinase A (matrix metalloproteinase-2, MMP-2) plays an important role in the degradation of collagen of soft connective tissues. In an attempt to investigate its participation in more detail we assessed the digestion of collagen in cultured rabbit periosteal explants and compared this with the level of active MMP-2 and collagenases. The data demonstrated that both collagen degradation and MMP activity increased with time. Conditioned medium obtained from explants cultured for 72 h showed that the level of active MMP-2 correlated with collagen degradation (r = 0.80, d.f. = 23, P < 0.0001). Such a relationship was not found with collagenase activity (r = -0.08, d.f. = 21, NS). The possible involvement of MMP-2 in collagen degradation was investigated further by incubating explants with selective gelatinase inhibitors (CT1166, CT1399 and CT1746). In the presence of these compounds breakdown of collagen was almost completely abolished (approximately 80%). Finally we assessed whether periosteal fibroblasts had the capacity to degrade collagen type I that conferred resistance to collagenase activity. Breakdown of this collagen did not differ from degradation of normal collagen. Taken together, our data provide support for the view that MMP-2 plays a crucial role in collagen degradation of soft connective tissue.  相似文献   

19.
Human mast cell beta-tryptase is a gelatinase   总被引:3,自引:0,他引:3  
Remodeling of extracellular matrix is an important component in a variety of inflammatory disorders as well as in normal physiological processes such as wound healing and angiogenesis. Previous investigations have identified the various matrix metalloproteases, e.g., gelatinases A and B, as key players in the degradation of extracellular matrix under such conditions. Here we show that an additional enzyme, human mast cell beta-tryptase, has potent gelatin-degrading properties, indicating a potential contribution of this protease to matrix degradation. Human beta-tryptase was shown to degrade gelatin both in solution and during gelatin zymographic analysis. Further, beta-tryptase was shown to degrade partially denatured collagen type I. beta-Tryptase bound strongly to gelatin, forming high molecular weight complexes that were stable during SDS-PAGE. Mast cells store large amounts of preformed, active tryptase in their secretory granules. Considering the location of mast cells in connective tissues and the recently recognized role of mast cells in disorders in which connective tissue degradation is a key event, e.g., rheumatoid arthritis, it is thus likely that tryptase may contribute to extracellular matrix-degrading processes in vivo.  相似文献   

20.
Collagen production by cultured human lung fibroblasts was examined when the cells were made deficient in ascorbate. Cells grown in the absence of ascorbate produced 30% less collagen during a 6-h labeling period than cells incubated with as little as 1 microgram/ml ascorbate during the labeling period. Cells grown without ascorbate produced under-hydroxylated collagen which was subject to increased intracellular degradation from a basal level of 16% to an enhanced level of 49% of all newly synthesized collagen. The likely mechanism for increased intracellular degradation is the inability of under-hydroxylated collagen to assume a triple-helical conformation causing it to be susceptible to intracellular degradation. Measurement of collagen production by enzyme linked immunoassay (ELISA) using antibodies directed against triple-helical determinants of collagen showed that both types I and III collagens were affected. In contrast, another connective tissue component, fibronectin, was not affected. Analysis by ELISA showed a greater decrease in collagen production than did analysis by the collagenase method, suggesting that some non-helical collagen chains (detected by collagenase but not by ELISA) were secreted in the absence of ascorbate. These results provide a mechanism to account, in part, for the deficiency of collagen in connective tissues which occurs in a state of ascorbate deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号