首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.  相似文献   

4.
5.
In this report, we focused on Pax3 and Pax7 expression in vitro during myoblast differentiation and in vivo during skeletal muscle regeneration. We showed that Pax3 and Pax7 were present in EDL (extensor digitorum longus) and Soleus muscle derived cells. These cells express in vitro a similar level of Pax3 mRNA, however, differ in the levels of mRNA encoding Pax7. Analysis of Pax3 and Pax7 proteins showed that Soleus and EDL satellite cells differ in the level of Pax3/7 proteins and also in the number of Pax3/7 positive cells. Moreover, Pax3/7 expression was restricted to undifferentiated cells, and both proteins were absent at further stages of myoblast differentiation, indicating that Pax3 and Pax7 are down-regulated during myoblast differentiation. However, we noted that the population of undifferentiated Pax3/7 positive cells was constantly present in both in vitro cultured satellite cells of EDL and Soleus. In contrast, there was no significant difference in Pax3 and Pax7 during in vivo differentiation accompanying regeneration of EDL and Soleus muscle. We demonstrated that Pax3 and Pax7, both in vitro and in vivo, participated in the differentiation and regeneration events of muscle and detected differences in the Pax7 expression pattern during in vitro differentiation of myoblasts isolated from fast and slow muscles.  相似文献   

6.
7.
Pax7 is required for the specification of myogenic satellite cells   总被引:55,自引:0,他引:55  
  相似文献   

8.
Growth of embryonic skeletal muscle occurs by fusion of multinucleated myotubes with differentiated, fusion-capable myoblasts. Selective recognition seems to prevent fusion of myotubes with nonmyogenic cells such as muscle fibroblasts, endothelial cells, or nerve cells, but the nature of the signal is as yet unknown. Here we provide evidence that one of the selection mechanisms may be the enhanced affinity for laminin of myogenic cells as compared to fibrogenic cells. Growing myotubes in myoblast cultures accumulate laminin and type IV collagen on their surface in patches and strands as the first step in assembling a continuous basal lamina on mature myofibers (U. Kühl, R. Timpl, and K. von der Mark (1982), Dev. Biol. 93, 344-359). Fibronectin, on the other hand, assembles into an intercellular fibrous meshwork not associated with the free myotube surface. Over a brief time period (10-20 min) myoblasts from embryonic mouse thigh muscle adhere faster to laminin than do fibroblasts from the same tissue; these adhere faster to fibronectin. When a mixture of the cells is plated for 20 min on laminin/type IV collagen substrates, only myogenic cells adhere, giving rise to cultures with more than 90% fusion after 2 weeks; on fibronectin/type I collagen in the same time primarily fibroblastic cells adhere, giving rise to cultures with less than 10% nuclei in myotubes. The differential affinities of myoblasts for basement membrane constituents and of fibroblasts for interstitial connective tissue components may play a role in sorting out myoblasts from fibroblasts in skeletal muscle development.  相似文献   

9.
Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration. Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICD(OE) (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells. We show that in addition to inhibiting MyoD and myogenic differentiation, NICD(OE) upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture. Using MyoD(-/-) myoblasts, we further show that NICD(OE) upregulates Pax7 independently of MyoD inhibition. In striking contrast to previous observations, NICD(OE) also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts. Overexpression of canonical Notch target genes mimics the inhibitory effects of NICD(OE) on MyoD and Ki67 but not the stimulatory effect on Pax7. Instead, NICD regulates Pax7 through interaction with RBP-Jκ, which binds to two consensus sites upstream of the Pax7 gene. Importantly, satellite cell-specific NICD(OE) results in impaired regeneration of skeletal muscles along with increased Pax7(+) mononuclear cells. Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.  相似文献   

10.
Skeletal muscle tissue provides mechanical force for locomotion of all vertebrate animals. It is prone to damage from acute physical trauma and physiological stress. To cope with this, it possesses a tremendous capacity for rapid and effective repair that is widely held to be accomplished by the satellite cells lying between the muscle fiber plasmalemma and the basement membrane. Cell transplantation and lineage-tracing studies have demonstrated that Pax7-expressing (Pax7(+)) satellite cells can repair damaged muscle tissue repeatedly after several bouts of acute injury. These findings provided evidence that Pax7(+) cells are muscle stem cells. However, stem cells from a variety of other origins are also reported to contribute to myofibers upon engraftment into muscles, questioning whether satellite cells are the only stem cell source for muscle regeneration. Here, we have engineered genetic ablation of Pax7(+) cells to test whether there is any significant contribution to muscle regeneration after acute injury from cells other than this source. We find that such elimination of Pax7(+) cells completely blocks regenerative myogenesis either following injury to the tibialis anterior (TA) muscle or after transplantation of extensor digitorum longus (EDL) muscles into nude mice. As Pax7 is specifically expressed in satellite cells, we conclude that they are essential for acute injury-induced muscle regeneration. It remains to be established whether there is any significant role for stem cells of other origins. The implications of our results for muscle stem cell-based therapy are discussed.  相似文献   

11.
Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.  相似文献   

12.
Skeletal muscle regeneration in adults is thought to occur through the action of myogenic satellite cells located in close association with mature muscle fibers; however, these precursor cells have not been prospectively isolated, and recent studies have suggested that additional muscle progenitors, including cells of bone marrow or hematopoietic origin, may exist. To clarify the origin(s) of adult myogenic cells, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of myofiber-associated cells capable at the single cell level of generating myogenic colonies at high frequency. Importantly, although muscle-engrafted cells from marrow and/or circulation localized to the same anatomic compartment as myogenic satellite cells and expressed some though not all satellite cell markers, they displayed no intrinsic myogenicity. Together, these studies describe the clonal isolation of functional adult myogenic progenitors and demonstrate that these cells do not arise from hematopoietic or other bone marrow or circulating precursors.  相似文献   

13.
We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.  相似文献   

14.
Satellite cells, muscle-specific stem cells, are anatomically identified as the mononuclear cells residing external to the myofiber plasma membrane and beneath the basal lamina. Skeletal muscle has great regenerative potential, and the regeneration process depends absolutely on satellite cells. In uninjured muscle, satellite cells are maintained in a quiescent state, and some genes are expressed in a quiescent-specific manner. Here we show that Odz4/Ten-m4, a mouse homolog of the Drosophila pair-rule gene odd Oz (odz or Ten-m), is expressed in quiescent satellite cells on the protein level, but not in activated/proliferating myoblasts. Intriguingly, the timing of the reappearance of Odz4 and calcitonin receptor (another quiescence molecule) on Pax7-positive cells was different during the regeneration process. In addition, almost all neonatal satellite cells express Odz4, but only some of them express calcitonin receptor. These results indicate that Odz4 may be useful as a new marker of satellite cells and that quiescence molecules are differently expressed in regenerating and neonatal muscle.  相似文献   

15.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   

16.
17.
18.
Myogenic cells from regenerating adult rat muscle were compared in culture with embryonic myoblasts. No differences were found in their growth rates or fusion characteristics. Embryonic and regenerating cells fused with one another to form mosaic myotubes. Both showed the same increase in creatine kinase activity and shift in isozyme profile following fusion. These results support the view that myogenic cells from regenerating muscle are essentially the same as embryonic myoblasts.  相似文献   

19.
20.
In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30 °C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30 °C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30 °C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号