首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a demyelinating autoimmune disease of the CNS and a leading cause of lasting neurologic disabilities in young adults. Although the precise mechanism remains incompletely understood, Ag presentation and subsequent myelin-reactive CD4(+) T cell activation/differentiation are essential for the pathogenesis of MS. Although semaphorins were initially identified as axon guidance cues during neural development, several semaphorins are crucially involved in various phases of immune responses. Sema4A is one of the membrane-type class IV semaphorins, which we originally identified from the cDNA library of dendritic cell (DC). Sema4A plays critical roles in T cell activation and Th1 differentiation during the course of experimental autoimmune encephalomyelitis, an animal model of MS; however, its pathological involvement in human MS has not been determined. In this study, we report that Sema4A is increased in the sera of patients with MS. The expression of Sema4A is increased on DCs in MS patients and shed from these cells in a metalloproteinase-dependent manner. DC-derived Sema4A is not only critical for Th1 but also for Th17 cell differentiation, and MS patients with high Sema4A levels exhibit Th17 skewing. Furthermore, patients with high Sema4A levels have more severe disabilities and are unresponsive to IFN-β treatment. Taken together, our results suggest that Sema4A is involved in the pathogenesis of MS by promoting Th17 skewing.  相似文献   

2.
Although semaphorins were identified originally as guidance cues for developing neuronal axons, accumulating evidence indicates that several semaphorins are expressed also in the immune system. SEMA4D (CD100), which is expressed constitutively by T cells, enhances the activation of B cells and dendritic cells (DCs) through its cell-surface receptor, CD72. SEMA4A, which is expressed by DCs, is involved in the activation of T cells through interactions with TIM2. So, these semaphorins seem to function in the reciprocal stimulation of T cells and antigen-presenting cells (APCs). Emerging evidence indicates that additional semaphorins and related molecules are involved in T-cell-APC interactions also.  相似文献   

3.
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for soluble class III semaphorins, whereas plexin-A1 has multiple functions in chick cardiogenesis as a receptor for the transmembrane semaphorin, Sema6D, independent of neuropilins. Additionally, plexin-A1 has been implicated in dendritic cell function in the immune system. However, the role of plexin-A1 in vivo, and the mechanisms underlying its pleiotropic functions, remain unclear. Here, we generated plexin-A1-deficient (plexin-A1(-/-)) mice and identified its important roles, not only in immune responses, but also in bone homeostasis. Furthermore, we show that plexin-A1 associates with the triggering receptor expressed on myeloid cells-2 (Trem-2), linking semaphorin-signalling to the immuno-receptor tyrosine-based activation motif (ITAM)-bearing adaptor protein, DAP12. These findings reveal an unexpected role for plexin-A1 and present a novel signalling mechanism for exerting the pleiotropic functions of semaphorins.  相似文献   

4.
The immune and nervous systems play distinct roles in maintaining physiological homeostasis. Recent data indicates that these systems influence one another and share many proteins and pathways that are essential for their normal function and development. Molecules originally shown to be critical for the development of proper immune responses have recently been found to function in the nervous system. Conversely, neuronal guidance cues can modulate immune functions. Although semaphorins were originally identified as axon guidance factors active during neuronal development, several recent studies have identified indispensable functions for these molecules in the immune system. This review provides an overview of the rapidly emerging functions of semaphorins and their receptors in the immune system.  相似文献   

5.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

6.
AD Sabag  J Bode  D Fink  B Kigel  W Kugler  G Neufeld 《PloS one》2012,7(8):e42912
Class-3 semaphorins are secreted axon guidance factors. Some of these semaphorins have recently been characterized as suppressors of tumor progression. To determine if class-3 semaphorins can be used to inhibit the development of glioblastoma-multiforme tumors, we expressed recombinant sema-3A, 3B, 3D, 3E, 3F or 3G in U87MG glioblastoma cells. Sema3A and sema3B expressing cells contracted and changed shape persistently while cells expressing other semaphorins did not. Sema3A and sema3F differed from other semaphorins including sema3B as they also inhibited the proliferation of the cells and the formation of soft agar colonies. With the exception of sema3G and sema3B, expression of these semaphorins in U87MG cells inhibited significantly tumor development from subcutaneously implanted cells. Strong inhibition of tumor development was also observed following implantation of U87MG cells expressing each of the class-3 semaphorins in the cortex of mouse brains. Sema3D and sema3E displayed the strongest inhibitory effects and their expression in U373MG or in U87MG glioblastoma cells implanted in the brains of mice prolonged the survival of the mice by more then two folds. Furthermore, most of the mice that died prior to the end of the experiment did not develop detectable tumors and many of the mice survived to the end of the experiment. Most of the semaphorins that we have used here with the exception of sema3D were characterized previously as inhibitors of angiogenesis. Our results indicate that sema3D also functions as an inhibitor of angiogenesis and suggest that the anti-tumorigenic effects are due primarily to inhibition of tumor angiogenesis. These results indicate that class-3 semaphorins such as sema3D and sema3E could perhaps be used to treat glioblastoma patients.  相似文献   

7.
Semaphorins, the plexin family of semaphorin receptors, and scatter factor receptors share evolutionarily conserved protein modules, such as the semaphorin domain and Met Related Sequences (MRS). All these proteins also have in common a role in mediating cell guidance cues. During development, scatter factor receptors control cell migration, epithelial tubulogenesis, and neurite extension. Semaphorins and their receptors are known signals for axon guidance; they are also suspected to regulate developmental processes involving cell migration and morphogenesis, and have been implicated in immune function and tumor progression. Scatter factors and secreted semaphorins are diffusible ligands, whereas membrane-bound semaphorins signal by cell-cell interaction. Cell guidance control by semaphorins requires plexins, alone or in a receptor complex with neuropilins. Semaphorins, besides their role in axon guidance, are expected to have multiple functions in morphogenesis and tissue remodeling by mediating cell-repelling cues through plexin receptors.  相似文献   

8.
The semaphorin family consists of soluble and membrane-bound proteins that act as chemorepulsive factors in neuronal development, thereby playing a crucial role in axon guidance. Although they are expressed in a broad range of embryonic and adult tissues, their physiological role outside the nervous system remains to be determined. Recently, emerging evidence has suggested that several semaphorins function as part of the immune system. CD100/Sema4D is the first semaphorin family member for which a critical role in the immune response has been identified. CD100 is involved in several arms of the immune response, including humoral and cell-based immunity. This review will focus on our current understanding of the role of this immunoregulatory semaphorin.  相似文献   

9.
Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.  相似文献   

10.
The semaphorins     
Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.  相似文献   

11.
The class-3 semaphorins (sema3s) include seven family members. Six of them bind to neuropilin-1 (np1) or neuropilin-2 (np2) receptors or to both, while the seventh, sema3E, binds to the plexin-D1 receptor. Sema3B and sema3F were previously characterized as tumor suppressors and as inhibitors of tumor angiogenesis. To determine if additional class-3 semaphorins such as sema3A, sema3D, sema3E and sema3G possess anti-angiogenic and anti-tumorigenic properties, we expressed the recombinant full length semaphorins in four different tumorigenic cell lines expressing different combinations of class-3 semaphorin receptors. We show for the first time that sema3A, sema3D, sema3E and sema3G can function as potent anti-tumorigenic agents. All the semaphorins we examined were also able to reduce the concentration of tumor associated blood vessels although the potencies of the anti-angiogenic effects varied depending on the tumor cell type. Surprisingly, there was little correlation between the ability to inhibit tumor angiogenesis and their anti-tumorigenic activity. None of the semaphorins inhibited the adhesion of the tumor cells to plastic or fibronectin nor did they modulate the proliferation of tumor cells cultured in cell culture dishes. However, various semaphorins were able to inhibit the formation of soft agar colonies from tumor cells expressing appropriate semaphorin receptors, although in this case too the inhibitory effect was not always correlated with the anti-tumorigenic effect. In contrast, the anti-tumorigenic effect of each of the semaphorins correlated very well with tumor cell expression of specific signal transducing receptors for particular semaphorins. This correlation was not broken even in cases in which the tumor cells expressed significant concentrations of endogenous semaphorins. Our results suggest that combinations of different class-3 semaphorins may be more effective than single semaphorins in cases in which tumor cells express more than one type of semaphorin receptors.  相似文献   

12.
Semaphorins were originally identified as axon guidance cues in the development of the nervous system. In recent years, numerous studies have determined that they are also involved in organogenesis, vascularization/angiogenesis, oncogenesis, and immune responses. In addition, the mechanisms underlying the diverse functions of semaphorins and their receptors have been identified. Recently, significant advances have been made in our understanding of the roles of semaphorins in bone remodeling, particularly the regulation of osteoclast and osteoblast differentiation and migration. Moreover, dysregulated semaphorin expression causes severe bone diseases, including osteoporosis and osteopetrosis. This review focuses on advanced findings on the role of semaphorins/receptors and their intracellular signaling in the regulation of bone homeostasis.  相似文献   

13.
Semaphorins and their receptors in vertebrates and invertebrates   总被引:14,自引:0,他引:14  
The semaphorins are a family of intercellular signaling proteins that has grown to include 19 identified members in higher vertebrates. Several of its members act as axonal guidance molecules. One participates in signaling in the immune system. The majority, however, do not yet have known biological functions. Recent studies have shown that neuropilins and plexins act as receptors for semaphorins. The most important challenge for the future is to define the biological roles of semaphorins in vivo.  相似文献   

14.
Semaphorins and their receptors in olfactory axon guidance.   总被引:2,自引:0,他引:2  
The mammalian olfactory system is capable of discriminating among a large variety of odor molecules and is therefore essential for the identification of food, enemies and mating partners. The assembly and maintenance of olfactory connectivity have been shown to depend on the combinatorial actions of a variety of molecular signals, including extracellular matrix, cell adhesion and odorant receptor molecules. Recent studies have identified semaphorins and their receptors as putative molecular cues involved in olfactory pathfinding, plasticity and regeneration. The semaphorins comprise a large family of secreted and transmembrane axon guidance proteins, being either repulsive or attractive in nature. Neuropilins were shown to serve as receptors for secreted class 3 semaphorins, whereas members of the plexin family are receptors for class 1 and V (viral) semaphorins. The present review will discuss a role for semaphorins and their receptors in the establishment and maintenance of olfactory connectivity.  相似文献   

15.
Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.  相似文献   

16.
The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1. Moreover, in a thioglycollate-induced peritonitis mouse model, Sema4A was detected in circulating Ly6C(high) inflammatory monocytes and peritoneal macrophages. Acting via PlexinD1, exogenous Sema4A strongly increased macrophage migration. Of note, Sema4A-activated PlexinD1 enhanced the expression of vascular endothelial growth factor-A, but not of inflammatory chemokines. Sema4A-stimulated macrophages were able to activate vascular endothelial growth factor receptor-2 and the PI3K/serine/threonine kinase Akt pathway in endothelial cells and to sustain their migration and in vivo angiogenesis. Remarkably, in an in vivo cardiac ischemia/reperfusion mouse model, Sema4A was highly expressed in macrophages recruited at the injured area. We conclude that Sema4A activates a specialized and restricted genetic program in macrophages able to sustain angiogenesis and participates in their recruitment and activation in inflammatory injuries.  相似文献   

17.
The semaphorins are a family of proteins originally identified as regulators of axon growth that recently have been implicated in blood vessel development. The plexins are high affinity receptors for the semaphorins and are responsible for initiation of signaling upon ligation. Emerging evidence indicates that many human cancers overexpress Semaphorin 4D, which promotes neovascularization upon stimulating its receptor, Plexin-B1, on endothelial cells. However, to exert its pro-angiogenic functions, Semaphorin 4D must be processed and released from its membrane bound form to act in a paracrine manner on endothelial cells. Here we show that Semaphorin 4D is a novel target for the membrane-tethered collagenase membrane type 1-matrix metalloproteinase. We demonstrate that this metalloproteinase, which is not expressed in normal or immortal but non-tumorigenic epithelial cell lines, was present in several head and neck squamous cell carcinoma cell lines and was required for processing and release of Semaphorin 4D into its soluble form from these cells, thereby inducing endothelial cell chemotaxis in vitro and blood vessel growth in vivo. These results suggest that the proteolytic cleavage of Semaphorin 4D may provide a novel molecular mechanism by which membrane type 1-matrix metalloproteinase controls tumor-induced angiogenesis.  相似文献   

18.
Semaphorins 3A and 3F are axon guidance proteins during nervous system development. Their expression pattern and function outside the nervous system are unknown. Neuropilin 1 and 2 (NP-1, NP-2) are natural ligands for semaphorins 3A and 3F, respectively. NP-1 is also a co-receptor for vascular endothelial growth factor (VEGF) required for normal vascular development. We showed that VEGF is a direct chemoattractant for glomerular endothelial cells towards developing nephrons. To examine whether semaphorins could modulate VEGF endothelial cell guidance cues in the developing kidney, we studied the expression of semaphorin 3A and semaphorin 3F and their receptors NP-1 and NP-2 in the kidney during ontogeny using Northern blot analysis, in situ hybridization, Western blot analysis and immunohistochemistry. All four genes are developmentally regulated, with abundant expression during organogenesis and downregulation in the adult kidney. Semaphorin 3A and 3F are expressed by podocytes and tubules whereas their receptors NP-1 and NP-2 are localized to endothelial cells. In vitro, renal tubular epithelial cell lines (tsMPT, IRPT and MDCK) and glomerular endothelial cells express both semaphorins and their receptors, suggesting the presence of an autocrine system. The distribution of the receptors NP-1 and NP-2 in endothelial cells and developing vessels is complementary to that of the ligands in adjacent epithelial cells during kidney development. The sum of the guidance cues provided by VEGF and semaphorins 3A and 3F may be important determinants of the pattern of endothelial cell migration during kidney morphogenesis.  相似文献   

19.
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.  相似文献   

20.
Semaphorins 3A and 3F are axon guidance proteins during nervous system development. Their expression pattern and function outside the nervous system are unknown. Neuropilin 1 and 2 (NP-1, NP-2) are natural ligands for semaphorins 3A and 3F, respectively. NP-1 is also a co-receptor for vascular endothelial growth factor (VEGF) required for normal vascular development. We showed that VEGF is a direct chemoattractant for glomerular endothelial cells towards developing nephrons. To examine whether semaphorins could modulate VEGF endothelial cell guidance cues in the developing kidney, we studied the expression of semaphorin 3A and semaphorin 3F and their receptors NP-1 and NP-2 in the kidney during ontogeny using Northern blot analysis, in situ hybridization, Western blot analysis and immunohistochemistry. All four genes are developmentally regulated, with abundant expression during organogenesis and downregulation in the adult kidney. Semaphorin 3A and 3F are expressed by podocytes and tubules whereas their receptors NP-1 and NP-2 are localized to endothelial cells. In vitro, renal tubular epithelial cell lines (tsMPT, IRPT and MDCK) and glomerular endothelial cells express both semaphorins and their receptors, suggesting the presence of an autocrine system. The distribution of the receptors NP-1 and NP-2 in endothelial cells and developing vessels is complementary to that of the ligands in adjacent epithelial cells during kidney development. The sum of the guidance cues provided by VEGF and semaphorins 3A and 3F may be important determinants of the pattern of endothelial cell migration during kidney morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号