首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligogalacturonides (OGs) are elicitors of plant defence responses released from the homogalacturonan of the plant cell wall during the attack by pathogenic micro-organisms. The signalling pathway mediated by OGs remains poorly understood, and no proteins involved in their signal perception and transduction have yet been identified. In order to shed light into the molecular pathways regulated by OGs, a differential proteomic analysis has been carried out in Arabidopsis. Proteins from the apoplastic compartment were isolated and their expression compared between control and OG-treated seedlings. 2-D gels and difference in gel electrophoresis (DIGE) techniques were used to compare control and treated proteomes in the same gel. The analysis of subcellular proteomes from seedlings allowed the identification of novel and low abundance proteins that otherwise remain masked when total cellular extracts are investigated. The DIGE technique showed to be a powerful tool to overcome the high interexperiment variation of 2-D gels. Differentially expressed apoplastic proteins were identified by MS and included proteins putatively involved in recognition as well as proteins whose PTMs are regulated by OGs. Our findings underscore the importance of cell wall as a source of molecules playing a role in the perception of pathogens and provide candidate proteins involved in the response to OGs.  相似文献   

2.
3.
Proteomic analysis of salt stress-responsive proteins in rice root   总被引:35,自引:0,他引:35  
Yan S  Tang Z  Su W  Sun W 《Proteomics》2005,5(1):235-244
Salt stress is one of the major abiotic stresses in agriculture worldwide. We report here a systematic proteomic approach to investigate the salt stress-responsive proteins in rice (Oryza sativa L. cv. Nipponbare). Three-week-old seedlings were treated with 150 mM NaCl for 24, 48 and 72 h. Total proteins of roots were extracted and separated by two-dimensional gel electrophoresis. More than 1100 protein spots were reproducibly detected, including 34 that were up-regulated and 20 down-regulated. Mass spectrometry analysis and database searching helped us to identify 12 spots representing 10 different proteins. Three spots were identified as the same protein, enolase. While four of them were previously confirmed as salt stress-responsive proteins, six are novel ones, i.e. UDP-glucose pyrophosphorylase, cytochrome c oxidase subunit 6b-1, glutamine synthetase root isozyme, putative nascent polypeptide associated complex alpha chain, putative splicing factor-like protein and putative actin-binding protein. These proteins are involved in regulation of carbohydrate, nitrogen and energy metabolism, reactive oxygen species scavenging, mRNA and protein processing, and cytoskeleton stability. This study gives new insights into salt stress response in rice roots and demonstrates the power of the proteomic approach in plant biology studies.  相似文献   

4.
Salt is one of the major abiotic stresses limiting the productivity and the geographical distribution of crops. To gain a better understanding of NaCl stress responses in model plant Arabidopsis roots, the protein changes in the abundance (Coomassie Brilliant Blue R-350 stain) and phosphorylation (Pro-Q Diamond stain) were examined using two-dimensional electrophoresis coupled with mass spectrometry (MS). Seventeen unique proteins differentially changed in abundance, phosphorylation, or both in response to NaCl. Nonsynchronous differences were found between total proteins and phosphorylated proteins. Protein synthesis, proteolysis, post-translational modifications, and isoforms might cause the differential protein redundancies. The identified proteins are involved in binding, catalysis, signal transduction, transport, metabolisms of cell wall and energy, and reactive oxygen species (ROS) scavenging and defense. These protein changes provide new avenues of investigation into the underlying salt stress response in Arabidopsis roots and demonstrate the advantages of proteomic approach in plant biology studies.  相似文献   

5.
6.
Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p<0.05) to salt stress treatments. Of the 118 spots, 79 were selected for tandem mass spectrometric identification, owing to their good resolution and abundance levels, and of these, 55 were positively identified. Identified proteins were divided into six functional categories including both known and novel/putative stress responsive proteins. Molecular and physiological functions of some of our proteins of interest are currently under investigation via bioinformatic and molecular biology approaches.  相似文献   

7.
8.
The plant cell apoplast, which consists of all the compartments beyond the plasma membrane, is implicated in a variety of functions during plant growth and development as well as in plant defence responses to stress conditions. To evaluate the role of apoplastic proteins in initial phase of salt stress, a 2-DE based differential proteomics approach has been used to identify apoplastic salt response proteins. Six salt response proteins have been identified, among them, an apoplastic protein OsRMC, which belongs to cysteine-rich repeat receptor like protein kinase subfamily but without the kinase domain, has shown drastically increased abundance in response to salt stress during the initial phase. Our results show, OsRMC negative regulates the salt tolerance of rice plants. These results indicated that plant apoplastic proteins may have important role in plant salt stress response signal pathway.Key words: rice, apoplast, proteomic, salt stress, receptor-like protein kinase, OsRMC  相似文献   

9.
10.
双向荧光差异凝胶电泳(2D-D IGE)作为一种新型的蛋白质组分析技术,已经被广泛应用于动物、植物、微生物以及人类差异蛋白的研究。在动物医学方面,采用DIGE技术,通过对不同类型,不同个体的细胞、组织、或经过不同处理和不同生长条件下蛋白质表达差异分析,在研究疾病的分子机理、分子诊断、药物作用机理、毒理学等方面都有广泛的应用。在植物学方面,该技术可以用来分离和分析植物亚细胞结构蛋白质组以及在生物和非生物胁迫下,植物细胞中蛋白质表达的差异性,从而建立差异蛋白相互作用网络图,从而为研究伤害机制提供一定的依据。  相似文献   

11.

Introduction

Platelet activation is related to the psychopathology of major depression. We attempted to search and identify protein biomarkers from the platelets of patients with major depression. High resolution two-dimensional Differential Gel Electrophoresis (2D-DIGE), the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Western blot, and bioinformatic tools were applied to examine the platelet proteins of 10 patients with major depression and 10 healthy controls.

Results

The levels of 8 proteins were significantly different between the patients with major depression in the acute phase and healthy controls. The levels of protein disulfide-isomerase A3 (PDIA3) and F-actin-capping protein subunit beta (CAPZB) were higher in patients with major depression than in healthy controls. The levels of fibrinogen beta chain (FIBB), fibrinogen gamma chain (FIBG), retinoic acid receptor beta (RARB), glutathione peroxidase 1 (GPX1), SH3 domain-containing protein 19 (SH319), and T-complex protein 1 subunit beta (TCPB) were lower in patients with major depression than in healthy controls.

Conclusions

Platelet provided valuable information about the pathways and processes of inflammation/immunity, oxidative stress, and neurogenesis, related to major depression.  相似文献   

12.
Gibberellin (GA) promoted rice (Oryza sativa L.) root elongation in a concentration-dependent manner with roots grown in 0.1 µm GA3 being 13.8% longer than controls. On the other hand, the roots of Tan-ginbozu, a semi-dwarf cultivar were 69.8% shorter in comparison with Nipponbare, a normal cultivar. Treatments with 10 µm uniconazole-P and 10 µm abscisic acid (ABA) caused decreases in root length in Tan-ginbozu by 44.6 and 79.2%, respectively. To investigate how GA influences rice root growth, proteome analysis techniques were applied. Extracted proteins were separated by two-dimensional polyacrylamide gel electrophoresis and analysed using an automated protein sequencer and mass spectrometer. Sixteen proteins show differences in accumulation levels as a result of treatment with GA3, uniconazole-P and ABA treatment and/or the difference between the semi-dwarf cultivar, Tan-ginbozu, and normal cultivars. Among these proteins, fructose-bisphosphate aldolase (EC 4.1.2.13) increased in roots treated with GA3, occurred in low levels in Tan-ginbozu roots, and decreased in roots treated with uniconazole-P or ABA. Moreover, roots from seedlings grown in 100 µm glucose were 9.1% longer than controls. These results indicate that increases in fructose-bisphosphate aldolase activity stimulate the glycolytic pathway and may play an important role in the GA-induced growth of roots.  相似文献   

13.
14.
Quantitative changes in the red blood cell membrane proteome in sickle cell disease were analyzed using the two-dimensional fluorescence difference gel electrophoresis 2D-DIGE technique. From over 500 analyzed two-dimensional gel spots, we found 49 protein gel spots whose content in sickle cell membranes were changed by at least 2.5-fold as compared to control cells. In 38 cases we observed an increase and in 11 cases a decrease in content in the sickle cell membranes. The proteins of interest were identified by in-gel tryptic digestion followed by liquid chromatography in line with tandem mass spectrometry. From 38 analyzed gel spots, we identified 44 protein forms representing different modifications of 22 original protein sequences. The majority of the identified proteins fall into small groups of related proteins of the following five categories: actin accessory proteins--four proteins, components of lipid rafts--two proteins, scavengers of oxygen radicals--two proteins, protein repair participants--six proteins, and protein turnover components--three proteins. The number of proteins whose content in sickle RBC membrane is decreased is noticeably smaller, and most are either components of lipid rafts or actin accessory proteins. Elevated content of protein repair participants as well as oxygen radical scavengers may reflect the increased oxidative stress observed in sickle cells.  相似文献   

15.
Experiments were conducted to identify the differentially expressed proteins in rice (Oryza sativa L.) plants after treatment with the glycoprotein elicitor CSB I, purified from ZC13, a race of the rice blast fungus Magnaporthe grisea. The interactions of two near isogenic lines of rice, C101A51 and CO39, with ZC13 resulted in completely incompatible and compatible types, respectively. Proteins were extracted from rice leaves at 12 and 24 h after treatment with CSB I. Temporal changes in total proteins were examined using 2‐DE. Among more than 900 protein spots reproducibly detected on each gel, 11 were up‐regulated, three were down‐regulated and seven were newly induced during, at a minimum, one time point. Twenty‐one differentially expressed proteins were identified by linear ion trap quadrupole (LTQ)‐MS/MS. The identified proteins were classified into six categories based on their putative function reported: (i) defense proteins (PR‐10a, PR‐5 and putative salt‐induced protein), (ii) signal transduction (nucleoside diphosphate kinase and putative profilin), (iii) ROS (Mn‐SOD, Cu/Zn‐SOD, GST and CAT), (iv) programmed cell death (translationally controlled tumor protein), (v) molecule biosynthesis (putative ribosomal protein S5, putative ribosomal protein L12, putative translational elongation factor Tu and putative chaperonin 21 precursor) and (vi) metabolism (putative fructose‐bisphosphate aldolase class‐I, putative malate dehydrogenase, cytoplasmic malate dehydrogenase, putative acid phosphatase, putative transketolase1 and gamma hydroxybutyrate dehydrogenase‐like protein). All of these proteins (except Cu/Zn‐SOD, putative acid phosphatase and translationally controlled tumor protein) were induced faster and to a higher degree in C101A51 than in CO39. These data suggest that the incompatible rice line may possess a more sensitive recognition system that can identify and react to specific chemical, biological or physical triggers in a more efficient manner, thus eliciting an early and fast defense response.  相似文献   

16.
The aerial parts of higher plants are generated from the shoot apical meristem(SAM). In this study, we isolated a small rice(Oryza sativa L.) mutant that showed premature termination of shoot development and was named mini rice 1(mini1). The mutant was first isolated from a japonica cultivar Zhonghua11(ZH11) subjected to ethyl methanesulfonate(EMS)treatment. With bulked segregant analysis(BSA) and map-based cloning method, Mini1 gene was finally fine-mapped to an interval of 48.6 kb on chromosome 9. Sequence analyses revealed a single base substitution from G to A was found in the region, which resulted in an amino acid change from Gly to Asp.The candidate gene Os09g0363900 was predicted to encode a putative adhesion of calyx edges protein ACE(putative HOTHEAD precursor) and genetic complementation experiment confirmed the identity of Mini1. Os09g0363900 contains glucose-methanol-choline(GMC) oxidoreductase and NAD(P)-binding Rossmann-like domain, and exhibits high similarity to Arabidopsis HOTHEAD(HTH). Expression analysis indicated Mini1 was highly expressed in young shoots but lowly in roots and the expression level of most genes involved in auxin biosynthesis and signal transduction were reduced in mutant.We conclude that Mini1 plays an important role in maintaining SAM activity and promoting shoot development in rice.  相似文献   

17.
18.
19.
Effect of NaCl stress on H2O2 metabolism in rice leaves   总被引:22,自引:0,他引:22  
The effect of NaCl stress on H2O2 metabolismin detached rice leaves was studied. NaCl (200 mM)treatment did not cause the accumulation ofH2O2 and resulted in no increase in lipidperoxidation and membrane leakage of leaf tissues. The activities of peroxidase, ascorbate peroxidase,superoxide dismutase, and glutathione reductase wereobserved to be greater in NaCl-stressed rice leavesthan in control leaves. However, glycolate oxidasewas lower in NaCl-treated rice leaves than in thecontrol leaves. There was no difference in catalaseactivity between NaCl and control treatments. Theseresults suggest that some antioxidant enzymes can beactivated in response to oxidative stress induced byNaCl.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号