首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of arachidonic acid, a precursor in the production of prostaglandins and leukotrienes, is achieved by activity of the cytosolic phospholipase A(2)α (cPLA(2)α). Signaling mediated by this class of bioactive lipids, which are collectively referred to as eicosanoids, has numerous effects in physiological and pathological processes. Herein, we report the development of a ligand-based pharmacophore model and pharmacophore-based virtual screening of the National Cancer Institute (NCI) database, leading to the identification of 4-(hexadecyloxy)-3-(2-(hydroxyimino)-3-oxobutanamido)benzoic acid (NSC 119957) as cPLA(2)α inhibitor in cell-free and cell-based in vitro assays.  相似文献   

2.
Phospholipase A(2) plays a role in cholesterol gallstone formation by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. This study investigated its effects on cholesterol crystallization in model bile systems. Supersaturated model bile solutions with different cholesterol saturation indexes (1.2, 1.4, and 1.6) were prepared using cholesterol, taurocholate, and egg yolk phosphatidylcholine, soybean phosphatidylcholine, palmitoyl-oleoyl phosphatidylcholine, or palmitoyl-linoleoyl phosphatidylcholine. Then the effect of digestion of phosphatidylcholine by phospholipase A(2) on bile metastability was assessed by spectrophotometry and video-enhanced differential contrast microscopy. Addition of phospholipase A(2) caused the release of free fatty acids in a time-dependent manner. Cholesterol crystallization was enhanced by an increased crystal growth rate in model bile containing hydrophilic species such as soybean or palmitoyl-linoleoyl phosphatidylcholine, consisting predominantly of polyunsaturated fatty acids. Because phospholipase A(2) enhanced cholesterol crystallization in bile containing hydrophilic phosphatidylcholine species, but not hydrophobic phosphatidylcholine species, release of polyunsaturated fatty acids by hydrolysis may be responsible for such enhancement. Therefore, the role of phospholipase A(2) in cholesterol gallstone formation depends on the phospholipid species present in bile, so that phospholipid species selection during hepatic excretion is, in part, crucial to the cholesterol stone formation.  相似文献   

3.
A phospholipase A2 was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A2 (LPLA2) and subsequently designated group XV phospholipase A2. LPLA2 has 49% of amino acid sequence identity to lecithin-cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA2 is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA2−/− mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA2−/− mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA2 may play a primary role in phospholipid homeostasis, drug toxicity, and host defense.  相似文献   

4.
cPLA2γ was identified as an ortholog of cPLA2α, which is a key enzyme in eicosanoid production. cPLA2γ was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localization, mechanism of membrane binding, regulation and physiological function have not been fully established. In the present study, we examined the subcellular localization and enzymatic properties of cPLA2γ with C-terminal FLAG-tag. We found that cPLA2γ was located not only in ER but also mitochondria even in the absence of the prenylation. Purified recombinant cPLA2γ catalyzed an acyltransferase reaction from one molecule of lysophosphatidylcholine (LPC) to another, forming phosphatidylcholine (PC). LPC or lysophosphatidylethanolamine acted as acyl donor and acceptor, but lysophosphatidylserine, lysophosphatidylinositol and lysophosphatidic acid (LPA) did not. PC and phosphatidylethanolamine (PE) also acted as weak acyl donors. Reaction conditions changed the balance of lysophospholipase and transacylation activities, with addition of LPA/PA, pH > 8, and elevated temperature markedly increasing transacylation activity; this suggests that lysophospholipase/transacylation activities of cPLA2γ may be regulated by various factors. As lysophospholipids are known to accumulate in ischemia heart and to induce arryhthmia, the cPLA2γ that is abundant in heart may have a protective role through clearance of lysophospholipids by its transacylation activity.  相似文献   

5.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of HPLC molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS—PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. The C. d. cascavella PLA2 required Ca2+ for activity, but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

6.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of high-performance liquid chromatography (HPLC) molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS-PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. C. d. cascavella PLA2 required Ca2+ for activity but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

7.
Cao J  Hsu YH  Li S  Woods VL  Dennis EA 《Biochemistry》2011,50(23):5314-5321
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) plays important roles in both the inhibition and promotion of inflammation in human disease. It catalyzes the hydrolytic inactivation of plasma platelet activating factor (PAF) and is also known as PAF acetylhydrolase. High levels of PAF are implicated in a variety of inflammatory diseases such as asthma, necrotizing enterocolitis, and sepsis. Lp-PLA(2) also associates with lipoproteins in human plasma where it hydrolyzes oxidized phospholipids to produce pro-inflammatory lipid mediators that can promote inflammation and the development of atherosclerosis. Lp-PLA(2) plasma levels have recently been identified as a biomarker of vascular inflammation, atherosclerotic vulnerability, and future cardiovascular events. The enzyme is thus a prominent target for the development of inflammation and atherosclerosis-modulating therapeutics. While the crystallographically determined structure of the enzyme is known, the enzyme's mechanism of interaction with PAF and the function-modulating lipids in lipoproteins is unknown. We have employed peptide amide hydrogen-deuterium exchange mass spectrometry (DXMS) to characterize the association of Lp-PLA(2) with dimyristoylphosphatidylcholine (DMPC) vesicles and found that specific residues 113-120 in one of the enzyme's surface-disposed hydrophobic α-helices likely mediate liposome binding.  相似文献   

8.
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

9.
Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[(14)C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA(2)γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA(2)γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA(2)γ selective), but not its enantiomer, (S)-BEL (iPLA(2)β selective) or pyrrolidine (cytosolic PLA(2)α selective), markedly attenuated Ca(2+)-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca(2+)-induced iPLA(2)γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA(2)γ. Intriguingly, Ca(2+)-induced iPLA(2)γ activation was completely inhibited by long-chain acyl-CoA (IC(50) ~20 μm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA(2)γ is activated by divalent cations and inhibited by acyl-CoA modulating the generation of biologically active metabolites that regulate mitochondrial bioenergetic and signaling functions.  相似文献   

10.
Whether group VIA phospholipase A(2) (iPLA(2)β) is involved in vascular inflammation and neointima formation is largely unknown. Here, we report that iPLA(2)β expression increases in the vascular tunica media upon carotid artery ligation and that neointima formation is suppressed by genetic deletion of iPLA(2)β or by inhibiting its activity or expression via perivascular delivery of bromoenol lactone or of antisense oligonucleotides, respectively. To investigate whether smooth muscle-specific iPLA(2)β is involved in neointima formation, we generated transgenic mice in which iPLA(2)β is expressed specifically in smooth muscle cells and demonstrate that smooth muscle-specific expression of iPLA(2)β exacerbates ligation-induced neointima formation and enhanced both production of proinflammatory cytokines and vascular infiltration by macrophages. With cultured vascular smooth muscle cell, angiotensin II, arachidonic acid, and TNF-α markedly induce increased expression of IL-6 and TNF-α mRNAs, all of which were suppressed by inhibiting iPLA(2)β activity or expression with bromoenol lactone, antisense oligonucleotides, and genetic deletion, respectively. Similar suppression also results from genetic deletion of 12/15-lipoxygenase or inhibiting its activity with nordihydroguaiaretic acid or luteolin. Expression of iPLA(2)β protein in cultured vascular smooth muscle cells was found to depend on the phenotypic state and to rise upon incubation with TNF-α. Our studies thus illustrate that smooth muscle cell-specific iPLA(2)β participates in the initiation and early progression of vascular inflammation and neointima formation and suggest that iPLA(2)β may represent a novel therapeutic target for preventing cardiovascular diseases.  相似文献   

11.
We examined the effect of the cellular sphingolipid level on the release of arachidonic acid (AA) and activity of cytosolic phospholipase A2α (cPLA2α) using two Chinese hamster ovary (CHO)-K1-derived mutants deficient in sphingolipid synthesis: LY-B cells defective in the LCB1 subunit of serine palmitoyltransferase for de novo synthesis of sphingolipid species, and LY-A cells defective in the ceramide transfer protein CERT for SM synthesis. When LY-B and LY-A cells were cultured in Nutridoma medium and the sphingolipid level was reduced, the release of AA stimulated by the Ca2+ ionophore A23187 increased 2-fold and 1.7-fold, respectively, compared with that from control cells. The enhancement in LY-B cells was decreased by adding sphingosine and treatment with the cPLA2α inhibitor. When CHO cells were treated with an acid sphingomyelinase inhibitor to increase the cellular SM level, the release of AA induced by A23187 or PAF was decreased. In vitro studies were then conducted to test whether SM interacts directly with cPLA2α. Phosphatidylcholine vesicles containing SM reduced cPLA2α activity. Furthermore, SM disturbed the binding of cPLA2α to glycerophospholipids. These results suggest that SM at the biomembrane plays important roles in regulating the cPLA2α-dependent release of AA by inhibiting the binding of cPLA2α to glycerophospholipids.  相似文献   

12.
Phospholipase A(2) enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A(2)α (cPLA(2)α) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA(2)α localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell-cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA(2)α release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA(2)α to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA(2)α fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA(2)α Golgi localization linked to cell confluence. Furthermore, cPLA(2)α Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA(2)α from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA(2)α-dependent endothelial tubule formation. Thus a VE-cadherin-PAR3-α-catenin adhesion complex regulates cPLA(2)α recruitment to the Golgi apparatus, with functional consequences for vascular physiology.  相似文献   

13.
Tocopheryl succinates (TOSs) are, in contrast to tocopherols, highly cytotoxic against many cancer cells. In this study the enzyme activity of secretory phospholipase A(2) towards various succinate-phospholipid conjugates has been investigated. The synthesis of six novel phospholipids is described, including two TOS phospholipids conjugates. The studies revealed that the TOS conjugates are poor substrates for the enzyme whereas the phospholipids with alkyl and phenyl succinate moieties were hydrolyzed by the enzyme to a high extent.  相似文献   

14.
Type II phosphatidylinositol (PtdIns) 4-kinases produce PtdIns 4-phosphate, an early key signaling molecule in phosphatidylinositol cycle, which is indispensable for T cell activation. Type II PtdIns 4-kinase alpha and beta have similar biochemical properties. To distinguish these isoforms Epigallocatechin gallate (EGCG) has been evaluated as a specific inhibitor. EGCG is the major active catechin in green tea having anti-inflammatory, antiatherogenic and cancer chemopreventive properties. The precise mechanism of actions and molecular targets of EGCG in early signaling cascades are not well understood. In the present study, we have shown that EGCG inhibits type II PtdIns 4-kinases (α and β isoforms) and PtdIns 3-kinase activity in vitro. EGCG directly bind to both alpha and beta isoforms of type II PtdIns 4-kinases with a Kd of 2.62 μM and 1.02 μM, respectively. Type II PtdIns 4-kinase-EGCG complex have different binding pattern at its excited state. Both isoforms showed significant change in helicity upon binding with EGCG. EGCG modulates its effect by interacting with ATP binding pocket; the residues likely to be involved in EGCG binding were predicted by Autodock. Our findings suggest that EGCG inhibits two isoforms and could be a key to regulate T cell activation.  相似文献   

15.
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N′-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a–f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a–f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b–d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50?=?9.99?±?0.18 µM); which is comparable to quercetin (IC50?=?9.93?±?0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50?>?200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.  相似文献   

16.

Background  

Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle) or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition) depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways.  相似文献   

17.
The crystal structure of bovine pancreatic phospholipase A2 has been refined to 1.7 Å resolution. The starting model for this refinement was the previously published structure at a resolution of 2.4 Å (Dijkstra et al., 1978). This model was adjusted to the multiple isomorphous replacement map with Diamond's real space refinement program (Diamond, 1971,1974) and subsequently refined using Agarwal's least-squares method (Agarwal, 1978). The final crystallographic R-factor is 17.1% and the estimated root-mean-square error in the positional parameters is 0.12 Å. The refined model allowed a detailed survey of the hydrogen-bonding pattern in the molecule. The essential calcium ion is located in the active site and is stabilized by one carboxyl group as well as by a peptide loop with many residues unvaried in all known phospholipase A2 sequences. Five of the oxygen ligands octahedrally surround the ion. The sixth octahedral position is shared between one of the carboxylate oxygens of Asp49 and a water molecule. The entrance to the active site is surrounded by residues involved in the binding of micelle substrates. The N-terminal region plays an important role here. Its α-NH+3 group is buried and interacts with Gln4, the carbonyl oxygen of Asn71 and a fully enclosed water molecule, which provides a link between the N terminus and several active site residues. A total of 106 water molecules was located in the final structure, most of them in a two-layer shell around the protein molecule. The mobility in the structure was derived from the individual atomic temperature factors. Minimum mobility is found for the main chain atoms in the central part of the two long α-helices. The active site is rather rigid.  相似文献   

18.
Although an atherogenic lipoprotein phenotype has been well recognized as an important predictor of cardiovascular disease, recent studies have demonstrated a number of additional lipid-related markers as emerging biomarkers to identify patients at risk for future coronary heart disease. Among them, lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), seems to be a promising candidate that might be added to the clinical armamentarium for improved prediction of cardiovascular disease in the future. Of particular note, Lp-PLA(2) is the only enzyme that cleaves oxidized low-density lipoprotein (oxLDL) in the subendothelial space, with further generation of proinflammatory mediators such as lysophosphatidylcholine (LysoPC) and oxidized fatty acid (oxFA), thereby probably linking two important features of atherogenesis, namely oxidation of LDL and local inflammatory processes within the atherosclerotic plaque. This overview aims to summarize our current knowledge based on observations from recent experimental and clinical studies. Emphasis has been put on potential pathophysiological mechanisms of action and on the clinical relevance of Lp-PLA(2) in a wide variety of clinical settings, including apparently healthy individuals, patients with stable angina or acute coronary syndromes, after myocardial infarction, and with subclinical disease. Although a growing body of evidence from epidemiological and clinical studies suggests that Lp-PLA(2) may represent an independent and clinically relevant long-term risk marker for coronary heart disease and, probably, also for stroke, the role of this enzyme in the setting of the acute coronary syndrome remains to be established.  相似文献   

19.
Although the cellular function of group IVC phospholipase A(2) (IVC-PLA(2)) remains to be understood, the expression of IVC-PLA(2) in human monocytic THP-1 cells was increased during phorbol ester-induced macrophage differentiation. We therefore examined the role of IVC-PLA(2) in macrophage differentiation using THP-1 cells. Two THP-1 cell lines stably expressing IVC-PLA(2)-specific shRNA were established. Differentiation and maturation into macrophages on treatment with phorbol ester were facilitated by knockdown of IVC-PLA(2) without the compensatory induction of mRNA expression for other group IV and VI PLA(2)s. Furthermore, the enhancement of macrophage differentiation by IVC-PLA(2)-knockdown were abolished by treatment with lysophosphatidylcholine, a metabolite of phospholipids generated by PLA(2)-mediated hydrolysis, indicating that PLA(2) activity is necessary for the inhibition of macrophage differentiation by IVC-PLA(2). Additionally, we found that the differentiation into classically activated M1 macrophage was superior in IVC-PLA(2)-knockdown cells, whereas the differentiation into alternatively activated M2 macrophage was suppressed by IVC-PLA(2)-knockdown. These findings suggest that IVC-PLA(2) is involved in regulations of macrophage differentiation and macrophage polarization.  相似文献   

20.
Dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) have potent biological effects on the blood(cells), the vasculature and the myocardium. In the epidemiological studies in which the benefit from the regular ingestion of n-3 PUFAs was reported, the responsible mechanisms remain obscure. A great deal of the PUFA-effect can be explained by the known interference with the eicosanoid metabolism. Many processes, believed to be involved in atherogenesis such as adhesion and infiltration of bloodcells (in)to the vasculature, platelet aggregation, secretion of endothelium-derived factors and mitogenic responses of vascular smooth muscle cells are partially mediated by receptor-activated phospholipases C- and A2. As PUFAs take part at many steps of the signalling pathways, the latter could represent important action sites to beneficially interfere with atherogenesis. In this brief review, we have discussed the results of studies on the influence of alteration of PUFA composition of the membrane phospholipids or of exogenously administered non-esterified PUFAs on phospholipid signalling. For convenience, we have mainly focused our discussion on those studies available on the myocardium. By changing the PUFA composition of the phospholipids, the endogenous substrates for the membrane-associated phospholipase C- and A2 are changed. This is accompanied by changes in their hydrolytic action on these substrates resulting in altered products (the molecular species of 1,2-diacylglycerols and the non-esterified PUFAs) which on their turn evoke changes in events downstream of the signalling cascades: activation of distinct protein kinase C isoenzymes, formation of distinct eicosanoids and non-esterified PUFA effects on Ca 2+ channels. It has also become more clear that the membrane physicochemical properties, in terms of fluidity and cholesterol content of the bilayer, might undergo changes due to altered PUFA incorporation into the membrane phospholipids. The latter effects could have consequences for the receptor functioning, receptor-GTP-binding protein coupling, GTP-binding protein-phospholipase C- or A2 coupling as well. It should be noted that most of these studies have been carried out with cardiomyocytes isolated from hearts of animals on PUFA diet or incubation of cultured cardiomyocytes with non-esterified PUFAs in the presence of albumin. Studies need to be performed to prove that the PUFA-diet induced modulations of the phospholipid signalling reactions do occur in vivo and that these effects are involved in the mechanism of beneficial effects of dietary PUFAs on the process of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号