首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
Several cryopreservation methods for precision-cut rat liver slices (PCLS) have been proposed, allowing a short-term (a few hours) maintainance of viability and functionality upon thawing. The aim of the present study was to test the metabolic capacity of PCLS cryopreserved by an ultrarapid method. The biotransformation of paracetamol to its glucuronide and sulfate conjugates and of midazolam to its hydroxylated metabolites was studied in thawed PCLS incubated for 24 hours at 37 degrees C in Williams' medium E. In addition, protein levels of the key enzymes involved in these metabolic reactions, i.e. UGT1A1, ST1A1, CYP2E1 and CYP3A2 were determinated. In addition, biological markers of cell function (ATP and glycogen levels) and toxicity (LDH leakage in the medium) were also measured. Compared to controls (non cryopreserved PCLS), CYP3A2 activity and content and CYP2E1 content were maintained at the same level all along the incubation, whereas paracetamol glucuronidation and sulfation dropped to 24 and 21% of the control value, respectively, immediately after thawing. Freezing-thawing conditions also modified cell functionality, leading to a lower intracellular ATP and glycogen content, and an increase in cell lysis, as shown by LDH released in the medium. The results of this study suggest that cryopreserved PCLS are able to maintain some phase I activities for 24 hours after thawing whereas some phase II metabolic capacities are not maintained.  相似文献   

2.
Recent studies support the hypothesis that non parenchymal cells (mainly macrophages) may play a role in the metabolism and cellular effects of paracetamol. In order to investigate this hypothesis, male Wistar rats were intravenously injected with either 7.5 mg/kg gadolinium chloride (Gd+) or NaCl 0.9% (Gd-). The treatment with GdCl3 decreased the number and the function of Kupffer cells in liver tissue, as assessed by the histological examination of the liver after colloidal carbon injection in the portal vein. Precision-cut liver slices (PCLS) were prepared from both groups of rats and cultured for 8h in Waymouth's medium in the presence and absence of 5 mM paracetamol. Interestingly, PCLS obtained from Gd+ rats exhibited a lower release of tumor necrosis factor (TNF-alpha) and a better viability than PCLS from control (Gd-) rats. Incubation with paracetamol led to a decreased glycogen level in liver slices from Gd+ or Gd-, without modifying neither liver morphology nor ATP level nor LDH release. A higher proportion of paracetamol glucuronide, was secreted from the slices obtained from Gd+ rats. These data suggest that Kupffer cells could affect the viability of PCLS in culture and are involved in the regulation of phase II metabolism in the adjacent hepatocytes. We propose that PCLS in culture is a suitable model to elucidate the biochemical mechanism underlying the modulation of metabolism occurring through hepatocytes-Kupffer cells interactions.  相似文献   

3.
Precision-cut liver slices in culture (PCLS) appears as a useful and widely used model for metabolic studies; the interest to develop an adequate cryopreservation procedure, which would allow maintaining cell integrity upon incubation, is needed to extend its use for human tissues. We have previously shown that cryopreservation of rat PCLS leads to caspase-3 activation and early alterations of their K+ content upon incubation. In this study, we tested the hypothesis that counteracting intracellular K+ loss and/or interfering with cell death signaling pathways could improve the viability of cryopreserved PCLS. PCLS were prepared from male Wistar rat liver and cryopreserved by rapid freezing before incubation. The addition of a caspase inhibitor-Z-DEVD-FMK (2.5 microM)-in the culture medium did not improve viability of cryopreserved PCLS. Incubation of cryopreserved PCLS in a K+ rich medium (135 mM) increased K+ content and avoided caspase-3 activation, but did not improve cell viability. Caspase-3 inhibition, a decrease in cell lysis, and improvement of glycogen content were observed in cryopreserved PCLS after addition of LiCl (100 mM) in the incubation medium. These results indicate that, even if caspase-3 activation is linked to the K+ loss in cryopreserved PCLS, its inhibition does not allow restoring the metabolic capacities. LiCl, acting on a target upstream of caspase-3 inhibition, improves cell viability and allows glycogen accumulation when added in culture medium of cryopreserved PCLS; and could thus be considered as an interesting adjuvant in the culture of cryopreserved PCLS.  相似文献   

4.
《Cryobiology》2013,66(3):179-187
Successful vitrification of organ slices is hampered by both osmotic stress and chemical toxicity of cryoprotective agents (CPAs). In the present study, we focused on the effect of osmotic stress on the viability of precision-cut liver slices (PCLS) by comparing different CPA solutions and different methods of loading and unloading the slices with the CPAs. For this purpose, we developed a gradient method to load and unload CPAs with the intention of minimizing sudden changes in osmolarity and thereby avoiding osmotic stress in the slices in comparison with the commonly used step-wise loading/unloading approach. With this gradient method, the CPA solution was introduced at a constant rate into a specially designed mixing chamber containing the slices. We showed that immediate mixing of the infused CPA and the chamber constituents occurred, which enabled us to control the CPA concentration to which PCLS were exposed as a function of time.With this method, CPA concentration versus time profiles were varied using various commercially available CPA mixtures [VMP, VM3, M22, and modified M22 (mM22)]. The viability of PCLS was determined after CPA loading and unloading and subsequent incubation during 3 h at 37 °C. Despite the reduction of osmotic stress, the viability of slices did not improve with gradual loading and unloading and remained considerably lower than that of untreated slices. The toxicity of the three CPA solutions did not correlate with either their potential osmotic effects or their total concentrations, and did not change strongly with exposure time in 100% CPA. The most likely explanation for these observations is that PCLS are not very sensitive to osmotic changes of the magnitude imposed in our study, and chemical toxicity of the CPA solutions is the main barrier to be overcome. The chemical toxicity of the CPAs used in this study probably originates from a source other than the total concentration of the solutions. The presented gradient method using the specially designed chamber is more time and cost effective than the step-wise method and can be universally applied to efficiently evaluate different CPA solutions.  相似文献   

5.
Successful vitrification of organ slices is hampered by both osmotic stress and chemical toxicity of cryoprotective agents (CPAs). In the present study, we focused on the effect of osmotic stress on the viability of precision-cut liver slices (PCLS) by comparing different CPA solutions and different methods of loading and unloading the slices with the CPAs. For this purpose, we developed a gradient method to load and unload CPAs with the intention of minimizing sudden changes in osmolarity and thereby avoiding osmotic stress in the slices in comparison with the commonly used step-wise loading/unloading approach. With this gradient method, the CPA solution was introduced at a constant rate into a specially designed mixing chamber containing the slices. We showed that immediate mixing of the infused CPA and the chamber constituents occurred, which enabled us to control the CPA concentration to which PCLS were exposed as a function of time.  相似文献   

6.
The proteasome and autophagy are two major intracellular protein degradation pathways and the regulation of each by ethanol metabolism affects cellular integrity. Using acute and chronic ethanol feeding to mice in vivo, and precision-cut rat liver slices (PCLS) ex vivo, we examined whether ethanol treatment altered these proteolytic pathways. In acute studies, we gave C57Bl/6 mice either ethanol or phosphate-buffered saline (PBS) by gastric intubation and sacrificed them 12h later. PCLS were exposed to 0 or 50mM ethanol for 12 and 24h with or without 4-methylpyrazole (4MP). In chronic studies we pair-fed control and ethanol liquid diets for 4-6 weeks to transgenic mice, expressing the green fluorescent protein (GFP) fused to the autophagic marker, microtubule associated protein-1 light chain 3 (LC3). Acute ethanol administration elevated autophagosomes (AVs), as judged by a 1.5-fold increase in LC3II content over PBS-gavaged control mice. Hepatic proteasome activity was unaffected by this treatment. Compared with controls, ethanol exposure for 12 and 24h to PCLS inhibited proteasome activity by 1.5- to 3-fold and simultaneously enhanced AVs by 2- to 5-fold. The decrease in proteasome activity and the rise in AVs both depended on ethanol oxidation as its inhibition by 4-methylpyrazole (4MP) blocked both proteasome inhibition and AV induction. Hepatocytes from mice chronically consuming ethanol exhibited a 1.6-fold decline in proteasome activity, and a 4-fold rise in GFP-LC3 puncta compared with pair-fed control mice. When we exposed hepatocytes from these animals to MG262, a proteasome inhibitor, LC3II puncta per cell further increased 2- to 5-fold over untreated cells. Conclusion: Our findings demonstrate that ethanol metabolism generates oxidants, the levels of which differentially influence the activities of the proteasome and autophagy.  相似文献   

7.
Due to the complex morphology of the prostate, it was hypothesized that precision-cut tissue slices from human prostate would provide a unique in vitro model. Precision-cut slices were generated from zones of human prostate and their viability was assessed under conditions of different media for up to 120 h. Slices were also exposed to several concentrations of CdCl2, which was used as a model toxicant. Maintenance of both stromal and epithelial cells was noted; however, there was a gradual loss of luminal epithelial cells when the medium was not supplemented with dihydrotestosterone (DHT). Minimal leakage of lactate dehydrogenase occurred throughout the incubation. Prostate-specific antigen (PSA) was detected in the medium at all time points, although the rates of secretion fell over time. There was a loss of PSA-positive cells when the medium was not supplemented with DHT, consistent with a loss of luminal cells, whereas PSA-positive cells were maintained in the DHT-supplemented media. A proliferation of basal cells was observed in the presence of media containing 10% fetal bovine serum. Exposure of slices to CdCl2 demonstrated a dose-response effect ranging from proliferation to complete cellular necrosis. Given the retention of stromal-epithelial interactions and the use of acquired human tissue, prostate slices represent a unique in vitro model for investigating human prostate pathobiology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In the present study, a new in vitro model combining the short-term incubation of precision-cut human liver slices with DNA-adduct analysis by the 32P-postlabelling technique is proposed for investigation of the genotoxic potential of xenobiotics. For method validation, the metabolic turnover of testosterone (TES) and the DNA-adduct inducing potential of 2-aminofluorene (2-AF) were used. Precision-cut human liver slices were prepared from a total of 12 human liver samples which were freshly obtained as parts of resectates from liver surgery. The slices were incubated as submersion cultures with TES and 2-AF for up to 6 h in 12-well tissue culture plates at concentrations of 10-50 and 0.06-28 μM, respectively. Slices recovered from the slicing procedure in the 4 °C cold Krebs-Henseleit buffer as indicated by intracellular potassium concentrations which increased for 2 h and then remained stable until the end of the incubation. TES was extensively metabolized by human liver slices with a similar metabolite pattern as observed in vivo. Almost 90% of the metabolites were conjugates. Major phase-I metabolites were androstendione, 6β-OH-androstendione, 6β-OH-TES, and 15β-OHTES. After incubation with 2-AF, substance related DNA-adducts were detected which increased dose-dependently from 12 to 1146 adducts per 109 nucleotides. The adduct pattern consisted of one major adduct spot, A, representing 80-90% of the total adduct level and up to four minor adduct spots, B-E. In summary, the present data demonstrate that precision-cut liver slices are a valuable alternative in vitro system for DNA-adduct determination to screen chemicals for potential genotoxicity in humans.  相似文献   

9.
In the present study, a new in vitro model combining the short-term incubation of precision-cut human liver slices with DNA-adduct analysis by the 32P-postlabelling technique is proposed for investigation of the genotoxic potential of xenobiotics. For method validation, the metabolic turnover of testosterone (TES) and the DNA-adduct inducing potential of 2-aminofluorene (2-AF) were used. Precision-cut human liver slices were prepared from a total of 12 human liver samples which were freshly obtained as parts of resectates from liver surgery. The slices were incubated as submersion cultures with TES and 2-AF for up to 6 h in 12-well tissue culture plates at concentrations of 10-50 and 0.06-28 μM, respectively. Slices recovered from the slicing procedure in the 4 °C cold Krebs-Henseleit buffer as indicated by intracellular potassium concentrations which increased for 2 h and then remained stable until the end of the incubation. TES was extensively metabolized by human liver slices with a similar metabolite pattern as observed in vivo. Almost 90% of the metabolites were conjugates. Major phase-I metabolites were androstendione, 6β-OH-androstendione, 6β-OH-TES, and 15β-OHTES. After incubation with 2-AF, substance related DNA-adducts were detected which increased dose-dependently from 12 to 1146 adducts per 109 nucleotides. The adduct pattern consisted of one major adduct spot, A, representing 80-90% of the total adduct level and up to four minor adduct spots, B-E. In summary, the present data demonstrate that precision-cut liver slices are a valuable alternative in vitro system for DNA-adduct determination to screen chemicals for potential genotoxicity in humans.  相似文献   

10.
We examined the maintenance of functional and morphological integrity of precision-cut rat liver slices cultured in various incubation systems and conditions for 72 h. Slices were incubated (37°C) for 6, 24, 48, and 72 h in supplemented Williams E medium in 6-well plastic culture plates on a gyratory shaking platform (WPCS) or in a rotating organ culture system (ROCS) using 5% CO2–95% air (WPCS/air or ROCS/air) or 5% CO2–70% O2–25% N2 (WPCS/ O2 or ROCS/ O2). Biochemical and functional parameters of slices maintained in WPCS/air or WPCS/ O2 were almost totally inhibited after 24 h, in keeping with the extensive and diffuse coalescing coagulative necrosis typical of post-ischemic injury affecting almost all the slice surface after 48 h. As compared to freshly isolated slices, slices maintained in ROCS/air for 72 h showed stable ATP and GSH content, increased protein synthesis, and a slight steady decrease in GST activity, while ATP and GST activity remained stable and protein synthesis and GSH content increased in slices incubated in ROCS/ O2 for 72 h. The extent of coagulative necrosis was markedly lower in longitudinal sections from slices incubated for 72 h in ROCS/ O2 than in ROCS/air. Transversal sections from slices kept in ROCS/air for 72 h showed a thick central band of necrotic cells edged by two peripheral layers of viable hepatocytes, whereas most of the slice was composed of viable hepatocytes lined by two thin layers of necrotic cells after 72 h in ROCS/ O2. ROCS/ O2 emerged as the system best preserving the histological and functional integrity of rat liver slices in long-term culture.  相似文献   

11.
Dynamic organ culture of precision liver slices for in vitro toxicology   总被引:2,自引:0,他引:2  
The lack of a reproducible method for the production of thin tissue slices has hindered the use of liver slices as an in vitro tool for hepatotoxicity studies. Fresh human, rat, and rabbit liver was processed using a mechanical slicer. With this instrument, precision (5% of thickness) liver slices in the submillimeter range could be produced at a rapid rate. Slices were prepared from fresh livers in chilled, oxygenated buffer to minimize trauma. Following incubation for up to 20 h in a dynamic organ culture system, histology of incubated slices suggested that 250 m precision-cut slices were optimum in regard to morphology relative to liver slices incubated under conventional organ culture conditions. Addition of bromobenzene to the culture showed time-dependent hepatotoxicity based on two classic parameters of cell degeneration. Histological evidence is presented which suggests the usefulness of this system for hepatotoxicity studies and the production of focal necrosis in vitro.  相似文献   

12.
The dog is the non-rodent species the most often used in preclinical drug safety evaluation. In this study, we established a new system of precision-cut dog renal cortical slices, evaluated their biochemical, functional, and morphological integrity, and determined the effects of cisplatin (cis-diamminedichloroplatinum (II), CDDP), a very potent nephrotoxic antineoplastic agent used to treat a variety of solid tumors, on the viability and histopathology of slices. Precision-cut renal cortical slices were made perpendicular to the cortical-papillary axis. Slices were incubated in DMEM/Ham's F12 culture medium containing 1 g/L glucose, 2 mmol/L glutamine, and 2 mmol/L heptanoic acid at 37°C in an atmosphere of 5% CO2-70% O2-25% N2 in dynamic organ culture. Our results showed that slices maintained ATP and GSH content, protein synthesis, Na+-dependent uptake of glucose inhibited by phlorizin, PAH (p-aminohippuric acid) uptake inhibited by probenecid, and TEA (tetraethylammonium) uptake inhibited by mepiperphenidol for at least 6 h of culture, and morphological integrity up to 24 h. After 6 h of exposure, CDDP induced vacuolation and cell necrosis in the epithelial tubular cells of slices with a concentration-related increase in extension but not in severity. The development of the lesions started in the proximal tubules and extended to the distal tubules. The location and the extension of the lesions confirmed the observations in dog kidneys after in vivo treatment with CDDP by the intravenous route. The concentration-related decrease in slice viability after 6 h exposure to CDDP was in keeping with the extension of the histopathological lesions in the renal parenchyma. The slice viability was unaffected up to 0.63 mmol/L CDDP. At 1.25 and 2.5 mmol/L CDDP, slice viability fell by 35% and 75%, respectively. These results suggest that precision-cut dog renal cortical slices in culture may be suitable for addressing the specific nephrotoxicity issues encountered in this species.Abbreviations CDDP cis-diamminedichloroplatinum (II) - FIS freshly isolated slices - GSH glutathione - GSSG glutathione disulfide - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - MGP methyl--D-glucopyranoside - MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide - PAH p-aminohippuric acid - PBS phosphate-buffered saline - TEA tetraethylammonium  相似文献   

13.
Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37°C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37°C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37°C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage.  相似文献   

14.
Our recent studies suggest that Kupffer cells play a role in the physiological regulation of lipid metabolism of the adjacent hepatocytes. In the present study, we have tested the hypothesis that inhibition of Kupffer cells decreases prostaglandin E(2) (PGE(2)) release inside liver tissue, a phenomenon contributing to lipid accumulation in hepatocytes. PGE(2) secretion as well as lipid synthesis were assessed in precision-cut liver slices (PCLS) from rats previously treated with Kupffer cell inhibitors (GdCl(3) 10 mg kg(-1) body wt, i.v. injection and glycine 5% in diet). In addition, lipid synthesis was assessed in primary rat hepatocytes cultured in the absence or presence of PGE(2) (0.01, 1 and 10 microM). Inhibition of Kupffer cell activity by GdCl(3) decreases PGE(2) secretion by PCLS and resulted in a higher lipid synthesis. Since incubation with PGE(2) over 48 h decreases lipid synthesis from acetate in cultured hepatocytes, we propose that the lower PGE(2) secretion linked to Kupffer cell inhibition, partly explains a higher rate of synthesis of lipids with a subsequent accumulation in liver tissue, as previously shown in fasted rats.  相似文献   

15.
Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37 degrees C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37 degrees C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37 degrees C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage.  相似文献   

16.
Precision-cut tissue slices of both hepatic and extra-hepatic origin are extensively used as an in vitro model to predict in vivo drug metabolism and toxicity. Cryopreservation would greatly facilitate their use. In the present study, we aimed to improve (1) rapid freezing and warming (200 degrees C/min) using 18% Me(2)SO as cryoprotectant and (2) vitrification with high molarity mixtures of cryoprotectants, VM3 and VS4, as methods to cryopreserve precision-cut rat liver and kidney slices. Viability after cryopreservation and subsequent 3-4h of incubation at 37 degrees C was determined by measuring ATP content and by microscopical evaluation of histological integrity. Confirming earlier studies, viability of rat liver slices was maintained at high levels by rapid freezing and thawing with 18% Me(2)SO. However, vitrification of liver slices with VS4 resulted in cryopreservation damage despite the fact that cryoprotectant toxicity was low, no ice was formed during cooling and devitrification was prevented. Viability of liver slices was not improved by using VM3 for vitrification. Kidney slices were found not to survive cryopreservation by rapid freezing. In contrast, viability of renal medullary slices was almost completely maintained after vitrification with VS4, however vitrification of renal cortex slices with VS4 was not successful, partly due to cryoprotectant toxicity. Both kidney cortex and medullary slices were vitrified successfully with VM3 (maintaining viability at 50-80% of fresh slice levels), using an optimised pre-incubation protocol and cooling and warming rates that prevented both visible ice-formation and cracking of the formed glass. In conclusion, vitrification is a promising approach to cryopreserve precision-cut (kidney) slices.  相似文献   

17.
18.

Background

Animal models should display important characteristics of the human disease. Sheep have been considered particularly useful to study allergic airway responses to common natural antigens causing human asthma. A rationale of this study was to establish a model of ovine precision-cut lung slices (PCLS) for the in vitro measurement of airway responses in newborn and adult animals. We hypothesized that differences in airway reactivity in sheep are present at different ages.

Methods

Lambs were delivered spontaneously at term (147d) and adult sheep lived till 18 months. Viability of PCLS was confirmed by the MTT-test. To study airway provocations cumulative concentration-response curves were performed with different allergic response mediators and biogenic amines. In addition, electric field stimulation, passive sensitization with house dust mite (HDM) and mast cells staining were evaluated.

Results

PCLS from sheep were viable for at least three days. PCLS of newborn and adult sheep responded equally strong to methacholine and endothelin-1. The responses to serotonin, leukotriene D4 and U46619 differed with age. No airway contraction was evoked by histamine, except after cimetidine pretreatment. In response to EFS, airways in PCLS from adult and newborn sheep strongly contracted and these contractions were atropine sensitive. Passive sensitization with HDM evoked a weak early allergic response in PCLS from adult and newborn sheep, which notably was prolonged in airways from adult sheep. Only few mast cells were found in the lungs of non-sensitized sheep at both ages.

Conclusion

PCLS from sheep lungs represent a useful tool to study pharmacological airway responses for at least three days. Sheep seem well suited to study mechanisms of cholinergic airway contraction. The notable differences between newborn and adult sheep demonstrate the importance of age in such studies.  相似文献   

19.
The effects of a cryopreservation procedure on the biochemical, morphological and functional integrity of rat liver slices just after thawing and after 24 h culture were evaluated. Freshly prepared slices were incubated in modified University of Wisconsin solution containing 50% fetal calf serum and 10% dimethyl sulfoxide for 20 min on ice prior to a rapid cooling in liquid nitrogen. After 10-40 days, slices were thawed rapidly at 42 degrees C. Total protein content and (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) (MTT) reduction were well preserved at thawing, whereas ATP content was markedly decreased relative to freshly prepared slices (-83%). The major microscopic findings in sections of just-thawed liver slices consisted of hepatocellular dissociation and minimal apoptosis. The qualitative profile of antipyrine (AP) metabolism was well preserved in cryopreserved slices, but the amounts of phase I and phase II AP metabolites produced over a 3-h incubation period were markedly reduced relative to fresh slices (-58 to -71%). When cryopreserved slices were cultured for 24 h after thawing, the viability was markedly reduced, as reflected by the almost complete absence of MTT reduction and the loss of ATP content. Histological examinations showed extensive cellular necrosis. The amount of AP metabolites produced by cryopreserved slices was similar after a 3- or a 24-h culture period, indicating that AP metabolism capacities were lost at 24 h culture. In conclusion, our results suggest that cryopreserved rat liver slices may be a useful model for short-term in vitro determination of drug metabolism pathways. Further work is required to extend their use for toxicological studies.  相似文献   

20.
Liver slices from control and inflamed rats were incubated in McCoy's medium and incorporation of [3H]leucine into liver and medium proteins and into albumin and alpha 1-acid glycoprotein was monitored over 48 hr. The release of the new acute phase reactant, sialyltransferase was also monitored in this system. Earlier observations in which liver slices were incubated for 6 hr showed that increased leucine incorporation into liver and medium proteins and alpha 1-acid glycoprotein, coupled with decreased incorporation into albumin, correlated with the acute phase response of these proteins. Increased incorporation of leucine into these proteins was found following 48 hr incubation in McCoy's medium showing that slices were able to express the changes characteristic of the acute phase response over this longer time period of incubation. Sialyltransferase was released into medium in a linear fashion up to 15 hr and continued to increase for 30 hr in this system; there was a substantial increase in release of enzyme activity from slices from inflamed rats when compared to controls. Monokine-conditioned medium prepared from peritoneal exudate cells isolated from rats at various times after lipopolysaccharide administration was used to induce the acute phase response by intraperitoneal injection. Slices were prepared from these rats and sialyltransferase release from slices was monitored. Monokines prepared from peritoneal exudate cells isolated from rats at about 30 hr were most effective in stimulating sialyltransferase release from liver slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号