首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.  相似文献   

2.
Numerous studies have reported that following intense exercise the rate of blood lactate (La) disappearance is greater during continuous aerobic work than during passive recovery. Recent work indicates that a combination of high- and low-intensity work may be optimal in reducing blood La. We tested this hypothesis by measuring the changes in blood La levels following maximal exercise during four different recovery patterns. Immediately following 50 S of maximal work, subjects (n = 7) performed one of the following recovery treatments for 40 min: 1) passive recovery (PR); 2) cycling at 35% maximal O2 uptake (VO2 max) (35% R); 3) cycling at 65% VO2 max (65% R); 4) cycling at 65% for 7 min followed by cycling at 35% for 33 min (CR). The treatment order was counterbalanced with each subject performing all treatments. Serial blood samples were obtained throughout recovery treatments and analyzed for La. The rate of blood La disappearance was significantly greater (P less than 0.05) in both the 35% R and CR when compared with either the 65% R or PR. No significant difference (P greater than 0.05) existed in the rate of blood La disappearance between the 35% R and CR. These data do not support the hypothesis that exercise recovery at a combination of intensities is superior to a recovery involving continuous submaximal exercise in lowering blood La following maximal work.  相似文献   

3.
Lovell, DI, Mason, DG, Delphinus, EM, and McLellan, CP. Do compression garments enhance the active recovery process after high-intensity running? J Strength Cond Res 25(12): 3264-3268, 2011-This study examined the effect of wearing waist-to-ankle compression garments (CGs) on active recovery after moderate- and high-intensity submaximal treadmill running. Twenty-five male semiprofessional rugby league players performed two 30-minute treadmill runs comprising of six 5-minute stages at 6 km·h, 10 km·h, approximately 85% VO(2)max, 6 km·h as a recovery stage followed by approximately 85% VO(2)max and 6 km·h wearing either CGs or regular running shorts in a randomized counterbalanced order with each person acting as his own control. All stages were followed by 30 seconds of rest during which a blood sample was collected to determine blood pH and blood lactate concentration [La]. Expired gases and heart rate (HR) were measured during the submaximal treadmill tests to determine metabolic variables with the average of the last 2 minutes used for data analysis. The HR and [La] were lower (p ≤ 0.05) after the first and second 6 km·h recovery bouts when wearing CGs compared with when wearing running shorts. The respiratory exchange ratio (RER) was higher and [La] lower (p ≤ 0.05) after the 10 km·h stage, and only RER was higher after both 85% VO(2)max stages when wearing CGs compared with when wearing running shorts. There was no difference in blood pH at any exercise stage when wearing the CGs and running shorts. The results of this study indicate that the wearing of CGs may augment the active recovery process in reducing [La] and HR after high-intensity exercise but not effect blood pH. The ability to reduce [La] and HR has important consequences for many sports that are intermittent in nature and consist of repeated bouts of high-intensity exercise interspersed with periods of low-intensity exercise or recovery.  相似文献   

4.
The effects of habitual cigarette smoking on cardiorespiratory responses to sub-maximal and maximal work were evaluated in nine adult nonsmokers and nine smokers with a mean age of 33 yr. A maximal treadmill test was followed by three tests at 45, 60 and 75% of each subject's VO(2)max. Compared to nonsmokers, the habitual smokers had a non-significantly lower VO(2)max in L/min and per lean body mass (9 and 6%, respectively), but had higher %fat (p<0.01), resulting in a significantly lower VO(2)max per kg body wt (13%, p<0.03). Maximal exercise ventilation (V(E)) was 16% lower in smokers. During sub-maximal work at equivalent exercise stress levels in the two groups, the V(E)/VO(2) ratio was higher in smokers by an average of 11% because VO(2) was lower and the respiratory exchange ratio values were significantly elevated in smokers at 75% of VO(2)max. Blood lactate concentrations in smokers were higher as workloads increased and O(2) pulse (VO(2)/HR) was significantly lower throughout, indicating reduced O(2) extraction, probably due to carbon monoxide. The resting HR was significantly higher in smokers and the HR recovery following all three submaximal exercises was significantly slower in smokers. These results show that detrimental cardiorespiratory effects of chronic cigarette smoking in apparently healthy individuals are evident at moderate exercise levels as reduced gas exchange efficiency in lungs and muscles.  相似文献   

5.
Diurnal variations in ventilatory and cardiorespiratory responses to submaximal treadmill exercise were analysed in 11 eumenorrhoeic women and in 10 women using monophasic oral contraceptives. Subjects performed submaximal treadmill exercise at three intensities averaging 7, 8, and 9 km x h(-1), each for 4 min at 0800, 1300 and 1700 hours, assigned randomly on 3 separate days. Rectal temperature was measured before (T(rec(b))) and after (T(rec(a))) exercise. Cardiac frequency (f(c)), ventilation (V(E)), oxygen uptake (VO(2)), carbon dioxide output (VCO(2)), and respiratory exchange ratio (R) were assessed in the last minute of each stage of the exercise. Both T(rec(b)) and T(rec(a)) increased from 0800 to 1700 hours (P < 0.001). For a given submaximal work rate, VO(2) and VCO(2) were higher in the afternoon compared to the morning. Similarly, R was increased at 1700 hours compared to 0800 hours during the recovery period following exercise (P < 0.05). However, V(E) did not vary significantly during the day at any of the running intensities. No significant interactions (group x time of day) were observed in any of the studied parameters. In contrast to ventilation, the VO(2) and VCO(2) of the females during submaximal exercise were both affected by the time of day, without any differences between eumenorrhoeic women and users of oral contraceptives.  相似文献   

6.
Stretching can lead to decreased muscle stiffness and has been associated with decreased force and power production. The purpose of this study was to investigate the acute effects of static stretching (SS) on running economy and endurance performance in trained female distance runners. Twelve long distance female (30 ± 9 years) runners were assessed for height (159.4 ± 7.4 cm), weight (54.8 ± 7.2 kg), % body fat (19.7 ± 2.8%), and maximal oxygen consumption (VO2max: 48.4 ± 5.1 ml·kg(-1)·min(-1)). Participants performed 2 sessions of 60-minute treadmill runs following a randomly assigned SS protocol or quiet sitting (QS). During the first 30 minutes (running economy), expired gases, heart rate (HR), and rating of perceived exertion (RPE) were recorded while the participant ran at 65% VO2max. During the final 30 minutes (endurance performance), distance covered, speed, HR, and RPE were recorded while the participant attempted to cover as much distance as possible. Repeated measures analyses of variance were performed on the data. Significance was accepted at p < 0.05. The SS measured by sit-and-reach increased flexibility (SS: 29.8 ± 8.3 vs. QS: 33.1 ± 8.1 cm) but had no effect on running economy (VO2: 33.7 ± 3.2 vs. 33.8 ± 2.3 ml·kg(-1)·min(-1)), calorie expenditure (270 ± 41 vs. 270 ± 41 kcal), HR (157 ± 10 vs. 160 ± 12 b·min(-1)), or endurance performance (5.5 ± 0.6 vs. 5.5 ± 0.7 km). These findings indicated that stretching did not have an adverse effect on endurance performance in trained women. This suggests that the performance decrements previously associated with stretching may not occur in trained women.  相似文献   

7.
A decrease in blood hydrogen ions (H) may allow for the recovery of a muscle, which should allow for greater performance in subsequent activity. The purpose of this study was to determine which of 3 forms of recovery were the most effective after an inning of pitching in baseball. Three different measurements were used to determine which recovery method was most effective; the difference in blood lactate (BLa) levels was used as a biological measurement, average pitching speed was the physiological measurement, and the psychological measurement was done on how the pitchers perceived their pitching and recovery. The recovery methods that were used were passive recovery (PR), active recovery (AR), and electromuscular stimulation (EMS). Seven college men aged 21 (±2 years) who were National Collegiate Athletic Association Division II college baseball pitchers were assessed during game play simulations. Blood lactate levels decreased significantly from the premeasurement to the postmeasurement with the EMS recovery method (p < 0.0005); however, BLa did not change for PR (p = 0.017) or AR (p = 0.134). Perceived recovery was also found to be best in the EMS and PR conditions. These findings suggest that EMS is an effective recovery method between innings of pitching.  相似文献   

8.
Barbosa, LF, de Souza, MR, Corrêa Caritá, RA, Caputo, F, Denadai, BS, and Greco, CC. Maximal lactate steady-state independent of recovery period during intermittent protocol. J Strength Cond Res 25(12): 3385-3390, 2011-The purpose of this study was to analyze the effect of the measurement time for blood lactate concentration ([La]) determination on [La] (maximal lactate steady state [MLSS]) and workload (MLSS during intermittent protocols [MLSSwi]) at maximal lactate steady state determined using intermittent protocols. Nineteen trained male cyclists were divided into 2 groups, for the determination of MLSSwi using passive (VO(2)max = 58.1 ± 3.5 ml·kg·min; N = 9) or active recovery (VO(2)max = 60.3 ± 9.0 ml·kg·min; N = 10). They performed the following tests, in different days, on a cycle ergometer: (a) Incremental test until exhaustion to determine (VO(2)max and (b) 30-minute intermittent constant-workload tests (7 × 4 and 1 × 2 minutes, with 2-minute recovery) to determine MLSSwi and MLSS. Each group performed the intermittent tests with passive or active recovery. The MLSSwi was defined as the highest workload at which [La] increased by no more than 1 mmol·L between minutes 10 and 30 (T1) or minutes 14 and 44 (T2) of the protocol. The MLSS (Passive-T1: 5.89 ± 1.41 vs. T2: 5.61 ± 1.78 mmol·L) and MLSSwi (Passive-T1: 294.5 ± 31.8 vs. T2: 294.7 ± 32.2 W; Active-T1: 304.6 ± 23.0 vs. T2: 300.5 ± 23.9 W) were similar for both criteria. However, MLSS was lower in T2 (4.91 ± 1.91 mmol·L) when compared with in T1 (5.62 ± 1.83 mmol·L) using active recovery. We can conclude that the MLSSwi (passive and active conditions) was unchanged whether recovery periods were considered (T1) or not (T2) for the interpretation of [La] kinetics. In contrast, MLSS was lowered when considering the active recovery periods (T2). Thus, shorter intermittent protocols (i.e., T1) to determine MLSSwi may optimize time of the aerobic capacity evaluation of well-trained cyclists.  相似文献   

9.
In this study we compared substrate oxidation and muscle oxygen availability during sustained intermittent intense and continuous submaximal exercise with similar overall (i.e. work and recovery) oxygen consumption (VO2). Physically active subjects (n = 7) completed 90 min of an intermittent intense (12 s work:18 s recovery) and a continuous submaximal treadmill running protocol on separate days. In another experiment (n = 5) we compared oxygen availability in the vastus lateralis muscle between these two exercise protocols using near-infrared spectroscopy. Initially, overall VO(2) (i.e. work and recovery) was matched, and from 37.5 min to 67.5 min of exercise was similar, although slightly higher during continuous exercise (8%; P < 0.05). Energy expenditure was constant (22.5-90 min of exercise) and was not different in intermittent intense [0.81 (0.01) kJ x min(-1). kg(-1)] and continuous submaximal [0.85 (0.01) kJ x min(-1) x kg(-1)] exercise. Overall exercise intensity, represented as a proportion of peak aerobic power (VO2(peak)), was 68.1 (2.5)% VO2(peak) and 71.8 (1.8)% VO2(peak) for intermittent and continuous exercise protocols, respectively. Fat oxidation was almost 3 times lower (P < 0.05) and carbohydrate oxidation was approximately 1.2 times higher (P < 0.05) during intermittent compared to continuous exercise, despite the same overall energy expenditure. Capillary plasma lactate was constant from 15 to 90 min of exercise, and pyruvate was constant from 15 to 75 min, although both were higher (P < 0.0001, lactate; P < 0.001, pyruvate) during intermittent [5.05 (0.28) mM, 200 (7) microM, respectively] compared to continuous exercise [2.41 (0.10) mM, 114 (4) microM, respectively]. There was no difference between protocols for either plasma glycerol or non-esterified fatty acids. The decrease in muscle oxygenation during work periods of intermittent exercise resulted in a lower nadir oxygenation [54.62 (0.41)%] compared to continuous exercise [58.82 (0.21)%, P < 0.001]. The decline in oxygenation was correlated with treadmill speed (r = 0.72; P < 0.05). These results show a difference in substrate utilisation and muscle oxygen availability during sustained intermittent intense and continuous submaximal exercise, despite a similar overall VO(2) and identical energy expenditure.  相似文献   

10.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

11.
The purpose of this investigation was to determine the effects of 4 weeks of oral Echinacea (ECH) supplementation on erythropoietin (EPO), red blood cell (RBC) count, running economy (RE), and VO2max. Twenty-four men aged 24.9 ± 4.2 years, height 178.9 ± 7.9 cm, weight 87.9 ± 14.6 kg, body fat 19.3 ± 6.5% were grouped using a double-blind design and self-administered an 8,000-mg·d(-1) dosage of either ECH or placebo (PLA) in 5 × 400 mg × 4 times per day for 28 days. Blood samples were collected and analyzed for RBCs and EPO using automated flow cytometery and enzyme-linked immunosorbent assay. Maximal graded exercise tests (GXTs) were administered to measure VO2max, RE, and heart-rate responses. Analysis of variance was used to determine statistically significant differences (P ≤ 0.05). The EPO increased significantly in ECH at 7 days (ECH: 15.75 ± 0.64, PLA: 10.01 ± 0.73 mU·ml(-1)), 14 days (ECH: 18.88 ± 0.71, PLA: 11.02 ± 0.69 mU·ml(-1)), and 21 days (ECH: 16.06 ± 0.55, PLA: 9.20 ± 0.55 mU·ml(-1)). VO2max increased significantly in ECH (ECH: 1.47 ± 1.28, PLA: -0.13 ± 0.52%). Running economy improved significantly in ECH as indicated by a decrease in submaximal VO2max during the first 2 stages of the GXT (stage 1: ECH -1.50 ± 1.21, PLA 0.60 ± 1.95%; stage 2: ECH -1.67 ± 1.43, PLA 0.01 ± 1.03%). These data suggest that ECH supplementation results in significant increases in EPO, VO2max, and running economy.  相似文献   

12.
The purpose of this study was to assess the intensity of official Futsal matches, expressed in different ways. Fourteen male professional Futsal players from a First Division Brazilian team volunteered to participate in this study. Maximal oxygen uptake (VO(2)max) and the heart hate (HR) and oxygen uptake (VO(2)) correlation were determined for each player. The match intensity was estimated from the players' average HR measured during 13 National Futsal League matches. The HR measurements were obtained while the players were in the court but the values recorded while the players were sitting on the bench were not considered. In addition, these HR values were used to estimate the intensity of the effort expressed as a percentage of the maximal HR (% HRmax), percentage of VO(2)max (% VO(2)max), kilocalories per minute (kcal·min(-1)), and total caloric expenditure. The mean intensity of the matches was 86.4 ± 3.8% HRmax, 79.2 ± 9.0% VO(2)max, 18.0 ± 2.2 kcal·min(-1), and 313 ± 9.3 kcal. It was concluded that official Futsal matches have high intensity when expressed in the different ways used in this study. The information provided by this research can be used for planning the athletes' workouts, diets, and resting periods.  相似文献   

13.
14.
Many studies have used the heart rate deflection points (HRDPs) during incremental exercise tests, because of their strong correlation with the anaerobic threshold. The aim of this study was to evaluate the profile of the HRDPs identified by a computerized method and compare them with ventilatory and lactate thresholds. Twenty-four professional soccer players (age, 22 ± 5 years; body mass, 74 ± 7 kg; height 177 ± 7 cm) volunteered for the study. The subjects completed a Bruce-protocol incremental treadmill exercise test to volitional fatigue. Heart rate (HR) and alveolar gas exchange were recorded continuously at ≥1 Hz during exercise testing. Subsequently, the time course of the HR was fit by a computer algorithm, and a set of lines yielding the lowest pooled residual sum of squares was chosen as the best fit. This procedure defined 2 HRDPs (HRDP1 and HRDP2). The HR break points averaged 43.9 ± 5.9 and 89.7 ± 7.5% of the VO2peak. The HRDP1 showed a poor correlation with ventilatory threshold (VT; r = 0.50), but HRDP2 was highly correlated to the respiratory compensation (RC) point (r = 0.98). Neither HRDP1 nor HRDP2 was correlated with LT1 (at VO2 = 2.26 ± 0.72 L·min(-1); r = 0.26) or LT2 (2.79 ± 0.59 L·min(-1); r = 0.49), respectively. LT1 and LT2 also were not well correlated with VT (2.93 ± 0.68 L·min(-1); r = 0.20) or RC (3.82 ± 0.60 L·min(-1); r = 0.58), respectively. Although the HR deflection points were not correlated to LT, HRDP2 could be identified in all the subjects and was strongly correlated with RC, consistent with a relationship to cardiorespiratory fatigue and endurance performance.  相似文献   

15.
Peak aerobic power (VO2peak) is decreased after blood donation, but the time course for full recovery is unknown. We measured VO2peak and exercise time to fatigue before and weekly for 4 weeks after 450-ml blood donation at a blood donor clinic, to determine the time course of recovery. Twelve moderately active individuals (2 women, 10 men; 24.3 ± 5.2 years) of average aerobic fitness (based on their VO2peak relative to normative values) completed VO2peak exercise tests before donation, the day after donation, and at weekly intervals for 4 weeks after donation. VO2peak was determined by an incremental exercise test on a cycle ergometer. At baseline, mean absolute and relative VO2peak values were 4.06 ± 0.92 L·min(-1) and 46.6 ± 7.0 ml·kg(-1)·min(-1), respectively. VO2peak was significantly decreased on day 1 (3.85 ± 0.89 L·min(-1); 44.0 ± 6.5 ml·kg(-1)·min(-1)) and during week 2 (3.91 ± 0.97 L·min(-1); 44.5 ± 7.2 ml·kg(-1)·min(-1)) after blood donation (p < 0.05), and recovered at week 3 after donation. Time to fatigue and peak heart rate were not significantly affected by blood donation. We conclude that blood donation causes a significant decrease in VO2peak for between 2 and 3 weeks. The practical application of this study is that aerobic power in people of average fitness will be decreased, up to 3 weeks after donating blood. Despite this, there is no effect of blood donation on performance as measured by time to fatigue during an incremental test on a cycle ergometer.  相似文献   

16.
The purpose of this study was to investigate the relationship that age has on factors affecting running economy (RE) in competitive distance runners. Fifty-one male and female subelite distance runners (Young [Y]: 18-39 years [n = 18]; Master [M]: 40-59 years [n = 22]; and Older [O]: 60-older [n = 11]) were measured for RE, step rate, lactate threshold (LT), VO2max, muscle strength and endurance, flexibility, power, and body composition. An RE test was conducted at 4 different velocities (161, 188, 215, and 241 m·min(-1)), with subjects running for 5 minutes at each velocity. The steady-state VO2max during the last minute of each stage was recorded and plotted vs. speed, and a regression equation was formulated. A 1 × 3 analysis of variance revealed no differences in the slopes of the RE regression lines among age groups (y = 0.1827x - 0.2974; R2 = 0.9511 [Y]; y = 0.1988x - 1.0416; R2 = 0.9697 [M]; y = 0.1727x + 3.0252; R2 = 0.9618 [O]). The VO2max was significantly lower in the O group compared to in the Y and M groups (Y = 64.1 ± 3.2; M = 56.8 ± 2.7; O = 44.4 ± 1.7 mlO2·kg(-1)·min(-1)). The maximal heart rate and velocity @ LT were significantly different among all age groups (Y = 197 ± 4; M = 183 ± 2; O = 170 ± 6 b·min(-1) and Y = 289.7 ± 27.0; M = 251.5 ± 32.9; O = 212.3 ± 24.6 m·min(-1), respectively). The VO2max @ LT was significantly lower in the O group compared to in the Y and M groups (Y = 50.3 ± 2.0; M = 48.8 ± 2.9; O = 34.9 ± 3.2 mlO2·kg(-1)·min(-1)). The O group was significantly lower than in the Y and M groups in flexibility, power, and upper body strength. Multiple regression analyses showed that strength and power were significantly related to running velocity. The results from this cross-sectional analysis suggest that age-related declines in running performance are associated with declines in maximal and submaximal cardiorespiratory variables and declines in strength and power, not because of declines in running economy.  相似文献   

17.
Regular exercise lowers indicators of disease risk including some inflammatory cytokines; however, the relationship between different modes of acute exercise, cytokine levels, and subsequent glucose tolerance is unclear. The purpose was to determine the effects of resistance (RES) and aerobic (AER) exercises on interleukin-6 (IL-6) and its association with glucose tolerance 24 hours after exercise. After testing for 1 repetition maximum (1RM) and VO2peak, 10 obese (body mass index > 30 kg · m(-2)), untrained men aged 18-26 years completed 3 protocols: 60 minutes of RES, AER, and a resting (CON) condition. The RES was 2 sets of 8 repetitions and a third set to fatigue at 80% 1RM of 8 lifts using all major muscle groups. The AER was 60 minutes of cycling at 70% of VO2peak. On day 1, subjects completed the 60-minute exercise or resting protocol, and on day 2, they completed an oral glucose tolerance test (OGTT). Blood was collected before and after exercise, at 2 and 7 hour postexercise, and before and every 30 minutes during the OGTT and was analyzed for IL-6, glucose and insulin. Postexercise IL-6 was greater in RES (8.01 ± 2.08 pg · mL(-1)) vs. in AER (4.26 ± 0.27 pg · mL(-1)), and both were greater than in CON (1.61 ± 0.18 pg · mL(-1)). During the OGTT, there were no differences in glucose or insulin between conditions for single time points or as area under the curve. The RES caused greater IL-6 levels immediately after exercise that may be related to the greater active muscle mass compared to AER. Neither exercise produced enhanced glucose removal compared to control; thus, despite the greater elevation in IL-6 in RES, for these exercise conditions and this population, this cytokine did not influence glucose tolerance.  相似文献   

18.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

19.
Increased energy expenditure (EE) is a key component in maintaining a healthy body mass. Walking and running are 2 common aerobic activities that increase EE above resting values. The purpose of this study was to compare the EE of individuals with average fitness during a walk and run for 1600 meters at 86 m·min(-1) and 160 m·min(-1), respectively. In addition, EE after the walk and run was compared. Fifteen females and 15 males (21.90 ± 2.52 y; 168.89 ± 11.20 cm; 71.01 ± 17.30 kg; 41.51 ± 6.31 ml(-1)·kg(-1)·min(-1)) volunteered to participate. Each participant completed a VO2max test. In addition, oxygen consumption was measured at rest for 10 minutes before exercise, during the walk and run, and after the walk and run for 30 minutes of recovery. EE during exercise was 372.54 ± 78.16 kilojoules for the walk and 471.03 ± 100.67 kilojoules for the run. Total EE including excess postexercise EE was 463.34 ± 80.38 kilojoules and 664.00 ± 149.66 kilojoules for the walk and run, respectively. Postexercise EE returned to resting values 10 minutes after the walk and 15 minutes after the run. Walking and running are both acceptable activities that increase EE above rest and can be performed without the expense of a health club membership and meet adequate kilojoule expenditure according to American College of Sports Medicine guidelines.  相似文献   

20.
The aim of this study was to compare selected acute cardiorespiratory and metabolic effects of exercise on a Fitness Flyer (FF) aerobic rider to those of treadmill (TM) running. Fourteen women, aged 23-35 years, performed incremental exercise tests to exhaustion on the TM and FF. Ratings of perceived exertion (RPE), heart rate (HR), minute ventilation (VE), VO2, and ventilatory equivalent (VEq) were compared in each subject during each phase of the exercise protocols, and blood lactate concentrations were measured before and 2-3 minutes after the exercise tests on the 2 modalities. Peak VO2 was higher (p < 0.05) on the TM than on the FF. Mean submaximal HR and VEq at a given VO2 was, however, higher on the FF than on the TM (p < 0.05). Maximum mean energy expenditure on the FF corresponded with mean energy expenditure on the TM at 8 km.h(-1) at an 18% gradient. Posttest blood lactate concentrations and RPE were higher on the FF than on the TM (p < 0.05). The results indicate that although exercising on an FF elicits less maximal cardiorespiratory response than does TM running, the FF may be better suited to developing local muscle endurance in the thigh muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号