首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oncostatin M     
Oncostatin M (OSM) was initially identified as a polypeptide cytokine which inhibited the in vitro growth of cells from melanoma and other solid tumors. OSM shows significant similarities in primary amino acid sequence and predicted secondary structure to leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), granulocyte colony-stimulating factor (G-CSF), interleukin 6 (IL-6), and interleukin 11 (IL-11). Analysis of the genes encoding these proteins reveals a shared exon organization suggesting evolutionary descent from a common ancestral gene. Recent data indicates that OSM also shares a number of in vitro activities with other members of this cytokine family. The overlapping biological effects appear to be explained by the sharing of receptor subunits.  相似文献   

2.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

3.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

4.
5.
6.
7.
Oncostatin M binds the high-affinity leukemia inhibitory factor receptor.   总被引:12,自引:0,他引:12  
Oncostatin M (OSM) is a glycoprotein cytokine that was recently demonstrated to be structurally and functionally related to the leukemia inhibitory factor (LIF). We have investigated the binding of each cytokine to a variety of cellular receptors including those on solid tumor lines, leukemic cells, endothelial cells, macrophages, and cells transfected with the recently cloned low-affinity LIF receptor, and to a soluble form of the LIF receptor. LIF is incapable of binding either high- or low-affinity OSM receptors, yet OSM is capable of binding the high-affinity but not the low-affinity LIF receptor. Since the presence of high-affinity LIF receptors correlates with the biological activity of LIF on a wide range of target cells, we predict that OSM should have similar effects on LIF-responsive cells.  相似文献   

8.
Oncostatin M: signal transduction and biological activity   总被引:12,自引:0,他引:12  
Gómez-Lechón MJ 《Life sciences》1999,65(20):2019-2030
Oncostatin M (OSM) is a multifunctional cytokine produced by activated T lymphocytes and monocytes that is structurally and functionally related to the subfamily of cytokines known as the IL-6-type cytokine family. OSM shares properties with all members of this family of cytokines, but is most closely related structurally and functionally to LIE OSM acts on a wide variety of cells and elicits diversified biological responses in vivo and in vitro which suggest potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. OSM and LIF can bind to the same functional receptor complex (LIF-receptor beta and gp130 heteromultidimers) and thus mediate overlapping spectra of biological activities. There is a second specific beta receptor that binds OSM with high affinity and also involves the subunit gp130. The two receptors for OSM can be functionally different and be coupled to different signal transduction pathways. OSM-specific receptors are expressed in a wide variety of cell types and do not possess an intrinsic tyrosine kinase domain, but the JAK/STAT tyrosine kinase pathway mediates signal transduction.  相似文献   

9.
We examined the effect of leukemia inhibitory factor (LIF) on the expression of interleukin 6 receptors (IL-6R) on mouse myelomonocytic leukemic M1 cells. Binding studies using 125I-labeled human and murine IL-6 revealed that LIF caused a decrease in IL-6 binding to M1 cells. The decrease became evident within 1 h, and the maximum decrease was observed at 3-6 h. Scatchard plot analysis revealed that M1 cells had a single class of high affinity receptors for IL-6 and that LIF-induced decrease in IL-6 binding was due to a decrease in the number of IL-6R on the cell surface and not to changes in their affinity. The affinity of IL-6R on M1 cells to human IL-6 (Kd = 2.25 nM) was about 10-fold lower than that to murine IL-6 (Kd = 200 pM). The amount of IL-6 secreted into culture media by M1 cells that were treated with LIF for up to 12 h was not enough to cause receptor down-regulation. Northern blot analysis demonstrated that IL-6R mRNA was down-regulated by LIF treatment, and similar regulation was also observed when the cells were treated with IL-6. The time course of the IL-6R mRNA level was similar to that of IL-6R expression on the cell surface, suggesting that the main mechanism responsible for the loss of high affinity IL-6R was the regulation of IL-6R mRNA. Although the half-life of IL-6R on the cell surface was about 30 min, the addition of LIF reduced it to 16 min, suggesting the existence of an additional mechanism responsible for the loss of high affinity IL-6R on the cell surface.  相似文献   

10.
11.
Oncostatin M (OSM) is a member of the IL-6/LIF (or gp130) cytokine family, and its potential role in inflammation is supported by a number of activities identified in vitro. In this study, we investigate the action of murine OSM on expression of the CC chemokine eotaxin by fibroblasts in vitro and on mouse lung tissue in vivo. Recombinant murine OSM stimulated eotaxin protein production and mRNA levels in the NIH 3T3 fibroblast cell line. IL-6 could regulate a small induction of eotaxin in NIH 3T3 cells, but other IL-6/LIF cytokines (LIF, cardiotrophin-1 (CT-1)) had no effect. Cell signaling studies showed that murine OSM, LIF, IL-6, and CT-1 stimulated the tyrosine phosphorylation of STAT-3, suggesting STAT-3 activation is not sufficient for eotaxin induction in NIH 3T3 cells. OSM induced ERK-1,2 and p38 mitogen-activated protein kinase phosphorylation in NIH 3T3 cells, and inhibitors of ERK (PD98059) or p38 (SB203580) could partially reduce OSM-induced eotaxin production, suggesting partial dependence on mitogen-activated protein kinase signaling. OSM (but not LIF, IL-6, or CT-1) also induced eotaxin release by mouse lung fibroblast cultures derived from C57BL/6 mice. Overexpression of murine OSM in lungs of C57BL/6 mice using an adenovirus vector encoding murine OSM resulted in a vigorous inflammatory response by day 7 after intranasal administration, including marked extracellular matrix accumulation and eosinophil infiltration. Elevated levels of eotaxin mRNA in whole lung were detected at days 4 and 5. These data strongly support a role of OSM in lung inflammatory responses that involve eosinophil infiltration.  相似文献   

12.
13.
Oncostatin M (OSM) is a member of a family of cytokines that includes ciliary neurotrophic factor, interleukin-6, interleukin-11, cardiotrophin-1, and leukemia inhibitory factor (LIF). The receptors for these cytokines consist of a common signaling subunit, gp130, to which other subunits are added to modify ligand specificity. We report here the isolation and characterization of a cDNA encoding a subunit of the mouse OSM receptor. In NIH 3T3 cells (which endogenously express gp130, LIF receptor β [LIFRβ], and the protein product, c12, of the cDNA described here), mouse LIF, human LIF, and human OSM signaled through receptors containing the LIFRβ and gp130 but not through the mouse OSM receptor. Mouse OSM, however, signaled only through a c12-gp130 complex; it did not use the LIF receptor. Binding studies demonstrated that mouse OSM associated directly with either the c12 protein or gp130. These data highlight the species-specific differences in receptor utilization and signal transduction between mouse and human OSM. In mouse cells, only mouse OSM is capable of activating the mouse OSM receptor; human OSM instead activates the LIF receptor. Therefore, these data suggest that all previous studies with human OSM in mouse systems did not elucidate the biology of OSM but, rather, reflected the biological actions of LIF.  相似文献   

14.
15.
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs.  相似文献   

16.
Oncostatin M (OSM) and leukemia inhibitory factor are pleiotropic cytokines that belong to the interleukin-6 (IL-6) family. These cytokines play a crucial role in diverse biological events like inflammation, neuroprotection, hematopoiesis, metabolism, and development. The family is grouped together based on structural similarities and their ability to activate the transmembrane receptor glycoprotein 130 (gp130). The common structure among these cytokines defines the spacing and the orientation of binding sites for cell surface receptors. OSM is unique in this family as it can signal using heterodimers of gp130 with either leukemia inhibitory factor receptor (LIFR) (type I) or oncostatin M receptor (OSMR) (type II). We have identified a unique helical loop on OSM between its B and C helices that is not found on other IL-6 family cytokines. This loop is located near the "FXXK" motif in active site III, which is essential for OSM's binding to both LIFR and OSMR. In this study, we show that the BC loop does not play a role in OSM's unique ability to bind OSMR. Shortening of the loop enhanced OSM's interaction with OSMR and LIFR as shown by kinetic and equilibrium binding analysis, suggesting the loop may hinder receptor interactions. As a consequence of improved binding, these structurally modified OSMs exhibited enhanced biological activity, including suppressed proliferation of A375 melanoma cells.  相似文献   

17.
18.
Evaluation of a pathophysiological role of the interleukin-6-type cytokine oncostatin M (OSM) for human diseases has been complicated by the fact that mouse models of diseases targeting either OSM or the OSM receptor (OSMR) complex cannot fully reflect the human situation. This is due to earlier findings that human OSM utilizes two receptor complexes, glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR) (type I) and gp130/OSMR (type II), both with wide expression profiles. Murine OSM on the other hand only binds to the gp130/OSMR (type II) receptor complex with high affinity. Here, we characterize the receptor usage for rat OSM. Using different experimental approaches (knock-down of the OSMR expression by RNA interference, blocking of the LIFR by LIF-05, an antagonistic LIF variant and stably transfected Ba/F3 cells) we can clearly show that rat OSM surprisingly utilizes both, the type I and type II receptor complex, therefore mimicking the human situation. Furthermore, it displays cross-species activities and stimulates cells of human as well as murine origin. Its signaling capacities closely mimic those of human OSM in cell types of different origin in the way that strong activation of the Jak/STAT, the MAP kinase as well as the PI3K/Akt pathways can be observed. Therefore, rat disease models would allow evaluation of the relevance of OSM for human biology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号