首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.  相似文献   

2.
Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N,28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources.In China, one of the major causes is the increasing de-coupling of animal and plant production.This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.  相似文献   

3.

Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources.

In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when “re-coupling” is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  相似文献   

4.
周振江  牛晓丽  李瑞  胡田田 《生态学报》2013,33(7):2139-2146
为了研究根系分区交替灌溉条件下灌水量和氮、磷、钾肥及有机肥用量对番茄果实硝酸盐含量的影响,采用五元二次正交旋转组合设计,通过盆栽试验,建立了番茄果实中硝酸盐含量与水肥因子的数学模型,并对各单一因素的效应及两两因素的耦合效应进行了分析。结果表明,在其他因子为中间水平时,番茄果实中的硝酸盐含量,随灌水量呈先降低后增加的变化规律;随施氮量和施磷量呈先增加后降低的变化趋势;随有机肥用量呈逐渐增加的趋势;但不受钾肥用量的影响。交互效应表现为,施磷量与有机肥用量、施氮量与施磷量间的相互作用会促使番茄果实硝酸盐含量提高;灌水量与施钾量和有机肥量、施氮量与施钾量间的相互作用有利于降低番茄果实硝酸盐累积。耦合效应表现为,除不施有机肥时随灌水量增加番茄果实硝酸盐含量显著增加外,对于其它任何有机肥及钾肥施用水平,果实硝酸盐含量皆随灌水量增加呈先减小后增加趋势;灌水量高于中水平时,番茄果实硝酸盐含量随着钾肥与有机肥用量的增加而减少。不论施磷量与施钾量如何变化,番茄果实硝酸盐含量皆随施氮量呈现先增加后减小的变化趋势,降低氮肥用量同时提高磷肥用量有利于降低番茄果实硝酸盐累积,而提高施钾量仅在施氮量高于中水平时能显著降低番茄果实硝酸盐含量。适当增加磷肥用量、减小有机肥用量能显著降低番茄果实硝酸盐的累积。  相似文献   

5.
M. Becker  J. K. Ladha  M. Ali 《Plant and Soil》1995,174(1-2):181-194
The growing concern about the sustainability of tropical agricultural systems stands in striking contrast to a world-wide decline in the use of soil-improving legumes. It is timely to assess the future role that soil-improving legumes may play in agricultural systems. This paper reviews recent progress, potential, and limitations of green manure technology, using lowland rice cropping systems as the example.Only a few legume species are currently used as green manures in lowland rice. Sesbania cannabina is the most widely used pre-rice green manure for rice in the humid tropics of Africa and Asia. Astragalus sinicus is the prototype post-rice green manure species for the cool tropics. Stem-nodulating S. rostrata has been most prominent in recent research. Many green manure legumes show a high N accumulation (80–100 kg N ha-1 in 45–60 days of growth) of which the major portion (about 80%) is derived from biological N2 fixation. The average amounts of N accumulated by green manures can entirely substitute for mineral fertilizer N at current average application rates. With similar N use efficiencies, green manure N is less prone to loss mechanisms than mineral N fertilizers and may therefore contribute to long-term residual effects on soil productivity.Despite a high N2-fixing potential and positive effects on soil physical and chemical parameters, the use of green manure legumes for lowland rice production has declined dramatically world-wide over the last 30 years. Land scarcity due to increasing demographic pressure and a relatively low price of urea N are probably the main determining factors for the long-term reduction in pre-rice green manure use. Post-rice green manures were largely substituted for by high-yielding early-maturing grain legumes. Unreliability of green manure performance, non-availability of seeds, and labor intensive operations are the major agronomic constraints. The recognition and extrapolation of niches where green manures have a comparative advantage may improve an often unfavorable economic comparison of green manure with cash crop or fertilizer N. Socio-economic factors like the cost of land, labor, and mineral N fertilizer are seen to determine the cost-effectiveness and thereby farmers' adoption of sustainable pre-rice green manure technology. Hydrology and soil texture determine the agronomic competitiveness of a green manure with N fertilizers and with alternative cash crops. In general, the niches for pre-rice green manure are characterized by a relatively short time span available for green manure growth and a soil moisture regime that is unfavorable for cash crops (flood-prone rainfed lowlands with coarse-textured soils).Given the numerous agronomic and socio-economic constraints, green manure use is not seen to become a relevant feature of favourable rice-growing environments in the foreseeable future. However, in environments where soil properties and hydrology are marginal for food crop production, but which farmers may be compelled to cultivate in order to meet their subsistence food requirements, green manures may have a realistic and applicable potential.  相似文献   

6.
This experiment was designed to characterize the physical, chemical and microbial properties of a standard commercial horticultural, greenhouse container, bedding plant medium (Metro-Mix 360), that had been substituted with a range of increasing concentrations (0%, 5%, 10%, 25%, 50% and 100% by volume) of pig manure vermicompost and to relate these properties to plant growth responses. The growth trials used tomatoes (Lycopersicon esculentum Mill.), grown in the substituted media for 31 days under glasshouse conditions, with seedling growth recorded in 20 pots for each treatment. Half of the tomato seedlings (10 pots per treatment) were watered daily with liquid inorganic fertilizer while the other half received water only. The percentage total porosity, percentage air space, pH and ammonium concentrations of the container medium all decreased significantly, after substitution of Metro-Mix 360 with equivalent amounts of pig manure vermicompost; whereas bulk density, container capacity, electrical conductivity, overall microbial activity and nitrate concentrations, all increased with increasing substitutions of vermicompost. The growth of tomato seedlings in the potting mixtures containing 100% pig manure vermicompost was reduced, possibly as a result of high soluble salt concentrations in the vermicompost and poorer porosity and aeration. The growth of tomato seedlings was greatest after substitution of Metro-Mix 360 with between 25% and 50% pig manure vermicompost, with more growth occurring in combinations of pig manure vermicompost treated regularly with a liquid fertilizer solution than in those with no fertilizer applied. Some of the growth enhancement in these mixtures seemed to be related to the combined effects of improved porosity, aeration and water retention in the medium and the high nitrate content of the substrate, which produced an increased uptake of nitrogen by the plant tissues, resulting in increased plant growth. When the tomato seedlings were watered daily with liquid inorganic fertilizer, substitution of Metro-Mix 360 with a very small amount (5%) of pig manure vermicompost resulted in a significant increase in the growth of tomato seedlings. Such effects could not be attributed solely to the nutritional or physical properties of the pig manure vermicompost. Therefore, it seems likely that the pig manure vermicompost provided other biological inputs, such as plant growth regulators into the container medium, that still need to be identified fully.  相似文献   

7.
With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn''t increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure.  相似文献   

8.
硝化抑制剂的施用效果、影响因素及其评价   总被引:36,自引:0,他引:36  
硝化抑制剂施用后其显著的农学效应、环境效应和生态效应已得到许多研究的证实,但其施用效果受多种因素的影响.本文从硝化抑制剂施用对土壤氮素转化、硝酸盐淋溶损失和温室气体排放、作物氮素利用、农产品产量和品质以及其他养分有效性的影响等几个方面进行综述,并分析影响其施用效果的因素和评价标准.  相似文献   

9.
平衡施肥对缺磷红壤性水稻土的生态效应   总被引:8,自引:0,他引:8  
为了研究平衡施肥对缺磷水稻土的生态效应,对长期缺施磷肥水稻土进行了3.5年平衡施肥试验。试验采取盆栽水稻的方式,在长期缺施磷肥的红壤性水稻土上比较不施磷肥(NK)、平衡施用氮磷钾无机肥(NPK)、无机氮磷钾肥配施硅肥(NPKSi)、无机氮磷钾肥配施有机肥(无机肥占3/5)、NPK基础上增施磷肥(NKhP)、NPKM基础上增施磷肥(NKhPM)处理的土壤肥力、土壤微生物特性、土壤磷的渗漏量以及地上部水稻产量、养分利用率、磷肥利用率的变化。试验表明,平衡施肥处理NPK、NPKSi、NPKM、NKhPM显著提高水稻产量,比不施磷肥(NK)平均增产147%,其中NPKM提高152%;能提高土壤肥力,比不施磷肥土壤有机质含量平均提高18.5%,其中NPKM提高30.1%;显著提高土壤微生物生物量,比不施磷肥土壤微生物生物量碳(MBC)平均提高57.2%,其中NPKM提高87.1%;提高氮素、钾素养分利用率,比不施磷肥平均分别提高120.3%、33.6%,其中NPKM分别提高152%、43%。而长期重施无机磷肥处理(NKhP)虽然水稻产量比不施磷肥处理提高125.1%,但因土壤中磷酸根离子含量过高影响土壤微生物正常生长,土壤微生物活度比不施磷处理降低9.4%,土壤微生物量碳(MBC)降低2.4%,稻田土壤微生物生态系统质量劣化。此外,重施磷肥处理(包括NKhP、NKhPM)易导致稻田水体的磷污染。各处理比较,NPKM综合生态效应最佳,以下依次是NKhPM、NPKSi、NPK,NKhP,NKhP对稻田土壤微生物生态系统产生负效应。根据试验结果,平衡施肥是恢复缺磷水稻土的有效措施,其中在平衡施用氮磷钾化肥的基础上增施有机肥或硅肥效果较好。  相似文献   

10.
绿肥在我国旱地农业生态系统中的服务功能及其应用   总被引:6,自引:0,他引:6  
旱地农业分布面积广、增产潜力大,在保障我国粮食安全方面占有重要地位,但也面临着水资源短缺、土壤贫瘠、水土流失严重和不可再生资源利用效率低等问题。绿肥不仅具有提高土壤质量、调节土壤养分和增强土壤水分蓄纳能力,从而改善作物生长环境,促进作物持续高产稳产的作用,而且在增加农田生态系统生物多样性、提高地表覆盖度、减少养分向环境中的无效损失、增强农田系统气体调节功能、提高病虫草害的生物防控等方面也具有显著的生态效益。在全球气候变化加剧、生态环境恶化和农产品需求改变等新形势下,以肥用为主要目的的传统绿肥种植应用技术已不能满足当前农业发展的需求,需要加强旱地绿肥种质资源的选育工作,通过研制新的适应新形势的全国绿肥区划,构建适应不同区域的绿肥种植模式,优化和研发适应现代化生产水平的耕作栽培技术,探究绿肥综合效益评价体系,为旱地农业区改善生态环境、提高经济效益,构建资源节约、生态保育型的绿肥应用模式,充分挖掘绿肥效益提供科学依据和技术支撑。  相似文献   

11.
施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响   总被引:3,自引:3,他引:0  
为探讨冬季绿肥改良土壤的生态效应及确定合适比例的氮肥与绿肥翻压量,在“冬季绿肥 双季稻”复种型农作制度基础上,设置4×4双因素试验,研究不同紫云英翻压量和施氮水平对土壤活性有机碳库各组分及碳库管理指数的影响.结果表明: 单施绿肥能够显著促进土壤总有机碳和活性有机碳的累积.与对照相比,单施绿肥处理土壤总有机碳含量和活性有机碳含量分别平均增加22.2%、26.7%,但单施氮肥处理的土壤有机碳含量下降了0.6%~3.4%.与不施肥相比,单施绿肥和绿肥氮肥配施处理的土壤碳库管理指数分别平均增加了24.55和15.17,而单施氮肥处理减少了2.59.单施绿肥、绿肥氮肥配施和单施氮肥处理的土壤平均微生物生物量碳分别比对照高54.0%、95.2%和14.3%.活性有机碳含量与碳库管理指数存在极显著(P<0.01)的相关性,与可溶性有机碳、微生物生物量碳也存在显著的相关性(P<0.05).水稻产量与活性有机碳含量和碳库管理指数均存在极显著的相关性,且相关系数明显大于总有机碳.可见在当地土壤肥力条件下,施有机肥或有机无机肥适当配施能提高土壤有机碳含量和土壤碳库管理指数,有利于改善土壤质量,提高土壤肥力.  相似文献   

12.
An experiment with increasing rates of fertilizer and manure in silage corn was established to evaluate the agronomic crop response and to estimate the manure nitrogen availability. The treatments were designed to deliver 0, 67, 100 and 133% of the crop nitrogen requirements (CNR), using ammonium sulphate and manure as N source. Dry matter (DM) yield was similar among treatments receiving N, but those values were greater than those found in the control. Nitrogen extraction at harvest was not statistically different in treatments with fertilizer or manure, but it was higher in these treatments than in the control without N (p≤ 0.05). With both sources of N, crop N extraction was adjusted to a quadratic regression equation, as a function of N rates. According to the fertilizer equivalence (EF) methodology, the rate of 231.3 kg/ha of inorganic fertilizer N, and 752.9 kg/ha of total N in manure, had 129.5 kg/ha of N extracted by the crop. The ratio of the above rates, fertilizer N/ manure total N, represents the crop available manure N; in the present study, it was 30.7% of total N in the manure. Since no differences in yield were observed between N sources, it is concluded that N fertilizer can be substituted by manure, at a rate estimated to provide the crop N requirements. The estimation of the manure available N is important to adjust manure rates, thereafter avoiding excessive applications and pollution risks.  相似文献   

13.
Plant roots and microorganisms play an important role in the soil N cycle and plant N nutrition through the release of extracellular enzymes. In the present greenhouse pot experiment, wheat (Triticum aestivum) seedlings were grown in a fluvo-aquic soil (Udifluvent) to investigate N mineralization and utilization in the rhizosphere of wheat. The soil received chemical fertilizer (15N-labeled urea), chemical fertilizer plus manure (common urea + 15N-labeled swine manure) or no N. Plant roots were separated from the soil with a nylon cloth, and 1-mm increments of soil moving laterally away from roots were analyzed for N, microbial C, and the activities of invertase, urease and protease. Chemical fertilizer plus manure promoted wheat growth and N absorption significantly compared with chemical fertilizer. 15N from both chemical fertilizer and swine manure accumulated significantly in the rhizosphere soil within 5 mm of the roots. Fertilized N could thus move easily laterally towards roots and there was no indication that movement through the soil limited plant N supply. A large proportion of fertilizer N was lost from the soil during the wheat growing period, and N utilization efficiency was 24% for chemical fertilizer and 30% for swine manure. In addition, faster rates of N mineralization, larger amounts of microbial C, and increased activities of invertase, urease and protease occurred in the rhizosphere compared with other parts of the soil. There was a significant correlation between microbial C and N mineralization rate (r?=?0.968, P?<?0.01) in the whole soil. Microbial C also showed significant positive correlations with activities of invertase (r?=?0.892, P?<?0.01) and protease (r?=?0.933, P?<?0.01). Further study showed that adding manure into soil increased microbial C and the activities of invertase and protease; adding urea stimulated urease activity in the same soil. Changes in soil enzyme activities in response to N fertilizers could be considered indicators for different fertilizer managements.  相似文献   

14.
Nitrogen (N) losses from livestock houses and manure storage facilities contribute greatly to the total loss of N from livestock farms. Volatilisation of ammonia (NH3) is the major process responsible for the loss of N in husbandry systems with slurry (where average dry matter content varies between 3 and 13%). Concerning this volatilisation of NH3, the process parameters of pH and air temperature are crucial. During a period of approximately 10 years, systematic measurements of NH3 losses originating from a large variety of different livestock houses were made. One of the problems with NH3 emissions is the large variation in the measured data due to the season, the production of the animals, the manure treatment, type of livestock house, and the manure storage. Generally speaking, prevention and control of NH3 emission can be done by control of N content in the manure, moisture content, pH, and temperature. In houses for growing pigs, a combination of simple housing measures can be taken to greatly reduce NH3 emissions. In houses for laying hens, the control of the manure drying process determines the emission of NH3. Monteny has built an NH3 production model with separate modules for the emission of the manure storage under the dairy house and the floor in the house. Manure spreading is also a major source of NH3 emission and is dependent on slurry composition, environmental conditions, and farm management. The effects of these factors have been employed in a model. Losses via NO, N2O, and N2 are important in husbandry systems with solid manure and straw. The number of experimental data is, however, very limited. As N2O is an intermediate product of complex biochemical processes of nitrification and denitrification, optimal conditions are the key issues in N2O reduction strategies. We may expect that in the near future the emission of greenhouse gases will get the same attention from policy makers as NH3. Sustainable livestock production has to combine low emissions of gaseous N compounds with acceptable odour emissions, low emissions of greenhouse gases, and acceptable standards of animal welfare. For the entrepreneur, the strategy must be built on the regulations, the special conditions of his farm, and what is reasonably achievable.  相似文献   

15.
研究华北冬绿肥二月兰对不同供氮水平的响应特征,确定实现绿肥高产高效的土壤适宜供氮量,可为华北集约化农田最大化发挥绿肥生态效应和优化春玉米/冬绿肥轮作体系氮素管理提供理论依据和技术参考.选取多年不施肥试验地设置供氮梯度试验,研究了不同供氮水平对冬绿肥二月兰翻压前地上部生物量累积、氮素吸收、土壤无机氮残留和冬绿肥季土壤氮素平衡的影响.结果表明: 在土壤无机氮含量较低(0~90 cm土层15 kg·hm-2)条件下,施氮显著提高二月兰生物量和吸氮量.其中,施氮90 kg·hm-2处理表现最高,绿肥生物量(干质量)和吸氮量分别为2031.0和42.0 kg·hm-2;土壤无机氮残留量随施氮量增加而增加,且在施氮量高于60 kg·hm-2后呈现快速增加趋势;随施氮量增加二月兰生长季的表观氮平衡表现出由亏缺到盈余的变化特征,在施氮量为60~90 kg·hm-2条件下氮收支基本平衡.土壤供氮量(绿肥播前0~90 cm土壤无机氮含量与施氮量之和)与二月兰生物量、吸氮量和绿肥翻压前土壤无机氮含量的关系可以分别用二次、线性加平台和指数方程进行模拟,依据模型计算二月兰生物量最高值(2010 kg·hm-2)时的播前土壤供氮量和绿肥翻压前土壤无机氮残留量分别是136和78 kg·hm-2;而在二月兰吸氮量最高值40 kg·hm-2时,二月兰生物量为1919 kg·hm-2,相当于最高生物量的95%,绿肥翻压前土壤残留无机氮降低至57 kg·hm-2,与之对应的播前土壤供氮量为105 kg·hm-2,该值与目前华北地区优化施氮下玉米收获后土壤残留无机氮推荐含量(100 kg·hm-2)基本相当.综合考虑绿肥的农学和环境效应,春玉米/冬绿肥轮作体系中二月兰播前土壤供氮量应控制在100~105 kg·hm-2.  相似文献   

16.
长期不同施肥方式对麦田杂草群落的影响   总被引:1,自引:0,他引:1  
蒋敏  沈明星  沈新平  戴其根 《生态学报》2014,34(7):1746-1756
以太湖地区农业科学研究所31a的长期肥料定位试验田为材料,分别于2011—2012年小麦苗期、拔节期和收获期进行了杂草群落调查,研究杂草类型与密度的分布、杂草多样性指数的变化,并对杂草种群分布与土壤养分因子进行冗余分析。结果表明:小飞蓬、看麦娘、大巢菜、稻槎菜、通泉草是本地区小麦生长期的主要杂草类型;随着小麦的生长以及氮肥、有机肥的施入,杂草密度呈下降趋势;施入有机肥降低了麦季杂草的群落多样性指数,在小麦生长的不同时期均衡施肥的CNPK处理以及不施肥的C0处理的群落各项多样性指数能维持在一个较高的水平。RDA分析显示土壤氮含量以及有机质含量与第一排序轴相关性大,是对杂草分布影响最大的两个土壤养分因子。太湖地区稻麦两熟制条件下,长期有机无机肥料单一或配合投入可显著影响麦田杂草的群落组成,其中氮肥和有机肥的施入能显著降低杂草密度;土壤养分的差异影响田面杂草密度和优势种群,均衡施肥能降低优势杂草种群的优势地位,抑制其发生危害程度,提高农田生态系统的生产力及稳定性。  相似文献   

17.
The effects of mineral fertilizer (NPK) and organic manure on phospholipid fatty acid profiles and microbial functional diversity were investigated in a long-term (21-year) fertilizer experiment. The experiment included nine treatments: organic manure (OM), organic manure plus fertilizer NPK (OM + NPK), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer N (N), fertilizer P (P), fertilizer K (K), and the control (CK, without fertilization). The original soil was extremely eroded, characterized by low pH and deficiencies of nutrients, particularly N and P. The application of OM and OM + NPK greatly increased crop yields, soil pH, organic C, total N, P and K, available N, P and K content. Crop yields, soil pH, organic C, total N and available N were also clearly increased by the application of mineral NPK fertilizer. The amounts of total PLFAs, bacterial, Gram-negative and actinobacterial PLFAs were highest in the OM + NPK treatment, followed by the OM treatment, whilst least in the N treatment. The amounts of Gram-positive and anaerobic PLFAs were highest in the OM treatment whilst least in the P treatment and the control, respectively. The amounts of aerobic and fungal PLFAs were highest in the NPK treatment whilst least in the N and P treatment, respectively. The average well color development (AWCD) was significantly increased by the application of OM and OM + NPK, and the functional diversity indices including Shannon index (H ), Simpson index (D) and McIntosh index (U) were also significantly increased by the application of OM and OM + NPK. Principal component analysis (PCA) of PLFA profiles and C source utilization patterns were used to describe changes in microbial biomass and metabolic fingerprints from nine fertilizer treatments. The PLFA profiles from OM, OM + NPK, NP and NPK were significantly different from that of CK, N, P, K and NK, and C source utilization patterns from OM and OM + NPK were clearly different from organic manure deficient treatments (CK, N, P, K, NP, NK 6 and NPK). Stepwise multiple regression analysis showed that total N, available P and soil pH significantly affected PLFA profiles and microbial functional diversity. Our results could provide a better understanding of the importance of organic manure plus balanced fertilization with N, P and K in promoting the soil microbial biomass, activity and diversity and thus enhancing crop growth and production.  相似文献   

18.
Vos  G. J. M.  Bergevoet  I. M. J.  Védy  J. C.  Neyroud  J. A. 《Plant and Soil》1994,160(2):201-213
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer. The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot. However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with the soil ammonium concentration.  相似文献   

19.
Daum  Diemo  Schenk  Manfred K. 《Plant and Soil》1998,203(2):279-288
The influence of nutrient solution pH on the emission of N2O and N2 was investigated during cultivation of cucumbers in a closed-loop rockwool system. Between pH 4 and 7 these gaseous nitrogen losses increased from 1.6 to 21.1% of the N fertilizer input. This was equivalent to average flux rates of 0.06 and 0.85 kg nitrogen per hectare greenhouse area and day, respectively. The N2O/N2 ratio was inversely related to the total gaseous nitrogen losses. At neutral pH dinitrogen was the main emission product, whereas more acidic conditions favoured the emission of nitrous oxide. The pH effects were probably not indirectly affected by root respiration or exudation as much as by a direct inhibition of the activity of denitrifying microorganisms due to high H+ concentrations since similar results were obtained in unplanted nutrient solution systems with the addition of glucose as carbon source. Despite the low microbial denitrification activity under acidic conditions, nitrogen balance deficits of up to one-fifth of the N input still occurred. It is suggested these losses were predominantly caused by chemodenitrification.  相似文献   

20.
施肥对蔬菜产量的影响——以寿光市设施蔬菜为例   总被引:4,自引:0,他引:4  
以寿光市具有代表性的51个设施大棚为研究对象,通过问卷调查的方法分析了化肥施用对蔬菜产量的影响、有机肥施用与增产的关系、施肥量的影响因素和演变规律等.结果表明: 寿光市设施大棚周年投入肥料养分平均为N 3338 kg·hm-2、P2O5 1710 kg·hm-2、K2O 3446 kg·hm-2,是当地小麦 玉米轮作种植模式的6~14倍,其中,化肥投入的氮、磷、钾量分别约占总量的35%、49%和42%.化肥投入的氮、磷、钾量对蔬菜产量没有显著影响,有机肥投入对蔬菜表现出明显的增产效果.随大棚棚龄的增加,化肥氮、磷、钾的投入量没有显著的变化,有机肥投入量明显降低.蔬菜种植种类、模式和大棚棚龄的差异是导致大棚养分投入量差异大的原因之一.近十几年来,寿光市设施大棚蔬菜有机肥养分投入量明显增加,化肥氮和磷的投入量呈现下降趋势,化肥钾的投入量增加显著,氮、磷、钾养分投入比例日趋合理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号