首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L−1 hr−1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0°C and the DOC concentration was greatest. The turnover time of thein situ glucose pool ranged seasonally from 40–1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations.  相似文献   

2.
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM.  相似文献   

3.
Dynamics of dissolved organic nitrogen in subalpine Castle Lake,California   总被引:2,自引:0,他引:2  
Dissolved organic nitrogen (DON) concentrations were measured in meso-oligotrophic Castle Lake, California during the ice-free season in 1982, 1983 and 1984. No consistent relationships were found between DON and particulate-N, primary productivity rates or chlorophyll concentrations. However, increases in DON concentrations were observed in the early growing season of 1982 and 1984 when water temperature was rising and a diatom bloom was senescing. DON increased at a high rate (0.31 mg atom N m–3 day–1), and then rapidly disappeared. Sediment released appared to be the most important source of DON. Dissolved free amino acids were always less than 7.5% of the DON pool, and did not vary in the composition of specific amino acids during the growing season.  相似文献   

4.
5.
6.
7.
We analyzed the molecular composition of dissolved organic matter (DOM) in the lower Amazon River (ca. 850 km from Óbidos to the mouth) using ultrahigh-resolution mass spectrometry and geochemical tracers. Changes in DOM composition along this lower reach suggest a transition from higher plant-derived DOM to more algal/microbial-derived DOM. This result was likely due to a combination of autochthonous production, alteration of terrigenous DOM as it transits down the river, and increased algal inputs from floodplain lakes and clearwater tributaries during high discharge conditions. Spatial gradients in dissolved organic carbon (DOC) concentrations varied with discharge. Maximal DOC concentrations were observed near the mouth during high water, highlighting the importance of lateral inputs of DOM along the lower river. The majority of DOM molecular formulae did not change within the time it takes the water in the mainstem to be transported through the lower reach. This is indicative of molecules representing a mixture of compounds that are resistant to rapid alteration and reactive compounds that are continuously replenished by the lateral input of terrestrial organic matter from the landscape, tributaries, and floodplains. River water incubations revealed that photo- and bio-transformation alter at most 30% of the DOM molecular formulae. River discharge at the mouth differed from the sum of discharge measurements made at Óbidos and the main gauged tributaries in the lower Amazon. This indicates that changes in hydrology and associated variations in the source waters along the lower reach affected the molecular composition of the DOM that is being transported from the Amazon River to the coastal ocean.  相似文献   

8.
Production and bioavailability of dissolved organic matter (DOM) were followed during a year in the nutrient-rich estuary, Roskilde Fjord (RF), and the more oligotrophic strait, Great Belt (GB), in Denmark. Bioavailability of dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP) was determined during incubations over six months. Overall, RF had three to five times larger pools of total nitrogen (TN) and total phosphorous (TP) and five to eight times higher concentrations of inorganic nutrients compared to GB. However, the allocation of carbon, nitrogen, and phosphorous into different pools were remarkably similar between the two systems. DON and DOP contributed with about equal relative fractions in the two systems: 72 ± 13% of total nitrogen and 21 ± 12% of total phosphorous. The average bioavailability of DOM was 25 ± 15, 17 ± 5.5, and 49 ± 29% for carbon, nitrogen, and phosphorous, respectively. The observed release of DIN from degradation of DON amounted to between 0.1 (RF winter) and 14 times (GB summer) the loadings from land and contributed with half of the total input of bioavailable nitrogen during summer. Hence, this study shows that nitrogen in DOM is important for the nitrogen cycling, especially during summer. The sum of inorganic nutrients, particulate organic matter, and bioavailable DOM (the dynamic pools of nutrients) accounted for 42 and 92% of nitrogen, and phosphorous, respectively, and was remarkably similar between the two systems compared to the difference in nutrient richness. It is hypothesized that the pelagic metabolism of nutrients in marine systems dictates a rather uniform distribution of the different fractions of nitrogen and phosphorous containing compounds regardless of eutrophication level.  相似文献   

9.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account.  相似文献   

10.
11.
12.
13.
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation–emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in three soil types: bog, forested wetland and upland forest. The percent BDOC ranged from 7 to 38% across all sites, and was significantly greater in soil compared to streamwater in the bog and forested wetland, but not in the upland forest. The percent BDOC also varied significantly over the entire sampling period in soil and streamwater for the bog and forested wetland, as BDOC peaked during the spring runoff and was lowest during the summer months. Moreover, the chemical quality of DOM in wetland soil and streamwater was similar during the spring runoff and fall wet season, as demonstrated by the similar contribution of protein-like fluorescence (sum of tyrosine and tryptophan fluorescence) in soil water and in streams. These findings suggest that the tight coupling between terrestrial and aquatic ecosystems is responsible for the delivery of labile DOM from wetland soils to streams. The contribution of protein-like fluorescence was significantly correlated with BDOC (p < 0.001) over the entire sampling period indicating DOM is an important source of C and N for heterotrophic microbes. Taken together, our findings suggest that the production of protein-rich, labile DOM and subsequent loss in stream runoff might be an important loss of labile C and N from coastal temperate watersheds.  相似文献   

14.
We investigated the chromophoric dissolved organic matter (CDOM) of river water in the Sakawa River and of surface water in the vicinity of the river’s mouth in Sagami Bay, Japan, during the period from July 2003 to July 2004. Absorption by CDOM was modeled as a logarithmic function. As a qualitative index of CDOM, the slope (S) of this function was estimated for a wavelength range from 280 to 500 nm. As a quantitative index of CDOM, the integration of absorption was determined between 280 and 500 nm (Σ 280 500 a CDOM). High seasonal variability of S values was observed at the marine station. The S values at the upstream stations were related to chlorophyll a concentrations but not to bacterial abundance, whereas the integrated values at upstream stations were correlated with precipitation. Seasonal variability in the integrated values was low at the downstream stations, where the effect of effluent from nonpoint sources and sewage treatment plants was strong. Anthropogenic CDOM at the downstream stations appeared to be degraded by microbial utilization and photodegradation, whereas terrestrially derived CDOM at the upstream stations was less degraded. These qualitative differences in CDOM and the marked effect of dilution by seawater near the Sakawa River mouth suggest that the dynamics of CDOM in riverine and coastal environments should be studied with careful consideration of both spatial and temporal variations, particularly in small estuaries.  相似文献   

15.
The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal assemblage was dominated by phylotypes closely related to the crenarchaeal 1.1a group (58% ± 18% of total 16S rRNA gene sequences), and consistent structural changes were detected during the study. Water temperature was the environmental variable that better explained spring, summer, and winter (ice-covered lakes) archaeal assemblage structure. The amoA gene was detected year round, and seasonal changes in amoA gene composition were well correlated with changes in the archaeal 16S rRNA gene pool. In addition, copy numbers of both the specific 1.1a group 16 rRNA and archaeal amoA genes were well correlated, suggesting that most freshwater 1.1a Crenarchaeota had the potential to carry out ammonia oxidation. Seasonal changes in the diversity and abundance of AOA (i.e., amoA) were better explained by temporal changes in ammonium, the substrate for nitrification, and mostly nitrite, the product of ammonia oxidation. Lacustrine amoA gene sequences grouped in coherent freshwater phylogenetic clusters, suggesting that freshwater habitats harbor typical amoA-containing ecotypes, which is different from soils and seas. We observed within the freshwater amoA gene sequence pool a high genetic divergence (translating to up to 32% amino acid divergence) between the spring and the remaining AOA assemblages. This suggests that different AOA ecotypes are adapted to different temporal ecological niches in these lakes.  相似文献   

16.
高原鼠兔对高寒草甸土壤有机质及湿度的作用   总被引:6,自引:5,他引:1  
李文靖  张堰铭 《兽类学报》2006,26(4):331-337
为探讨高原鼠兔对土壤理化性质的作用, 本研究于2005年8月, 采用灼烧和烘干法, 分别测定了高原鼠兔栖息及被灭杀地区土壤有机质含量及湿度。结果表明: 高原鼠兔栖息地区, 0~5 cm及6~10 cm土壤层有机质含量和湿度均极显著或显著高于被灭杀地区; 11~30 cm 土壤层, 二者无显著的差异;31~50 cm土壤层, 有机质含量差异极显著, 而土壤湿度则无显著差异。说明, 高原鼠兔活动可增加高寒草甸土壤表层有机质含量和湿度, 进而改变土壤理化性质, 促进生态系统物质循环。  相似文献   

17.
The bioavailability and composition of dissolved organic carbon (DOC) and nitrogen (DON) were examined in 10 major sub-catchments of the Swan-Canning estuary, which bisects the city of Perth, in south-western Australia. Catchments contain a mix of forest, agriculture, and urban-dominated land-use, with the degree of development increasing near the city center. We incubated water samples from the 10 sub-catchments for 14 days at 25°C, and measured changes in DOC and DON and dissolved inorganic nitrogen (DIN). A greater proportion of DON (4–44%) was decomposed compared to DOC (1–17%). Both agricultural and urban catchments had high proportions of bioavailable DOC and DON, but overall DOC and DON losses were greatest in urban catchments. Using resin isolation techniques, we found that DOC was concentrated in the hydrophobic (humic) fraction, whereas DON had both hydrophobic and hydrophilic (non-humic) fractions. Hydrophobic DOC content was positively related to DOC decomposition. In contrast, DON decomposition was highly correlated with hydrophilic DON content and inversely related to the hydrophilic DOC/DON ratio, indicating a labile fraction of DON from non-humic sources. Taken together, these relationships suggest that bioavailable DOC may be supplied in part from terrestrial plant material, but bioavailable DON is likely to be from highly labile sources, possibly autochthonous or anthropogenic. Overall, labile DON was greater than initial DIN concentration at seven of ten sites and was even dominant in highly developed catchments. This study highlights the importance of organic N in urbanizing coastal catchments that, in addition to DIN, may serve as a readily available source of N for in-stream and estuarine production.  相似文献   

18.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales.  相似文献   

19.
Vaughan  M. C. H.  Bowden  W. B.  Shanley  J. B.  Vermilyea  A.  Schroth  A. W. 《Biogeochemistry》2019,143(3):275-291

The quantity and character of dissolved organic matter (DOM) can change rapidly during storm events, affecting key biogeochemical processes, carbon bioavailability, metal pollutant transport, and disinfection byproduct formation during drinking water treatment. We used in situ ultraviolet–visible spectrophotometers to concurrently measure dissolved organic carbon (DOC) concentration and spectral slope ratio, a proxy for DOM molecular weight. Measurements were made at 15-minute intervals over three years in three streams draining primarily agricultural, urban, and forested watersheds. We describe storm event dynamics by calculating hysteresis indices for DOC concentration and spectral slope ratio for 220 storms and present a novel analytical framework that can be used to interpret these metrics together. DOC concentration and spectral slope ratio differed significantly among sites, and individual storm DOM dynamics were remarkably variable at each site and among the three sites. Distinct patterns emerged for storm DOM dynamics depending on land use/land cover (LULC) of each watershed. In agricultural and forested streams, DOC concentration increased after the time of peak discharge, and spectral slope ratio dynamics indicate that this delayed flux was of relatively higher molecular weight material compared to the beginning of each storm. In contrast, DOM character during storms at the urban stream generally shifted to lower molecular weight while DOC concentration increased on the falling limb, indicating either the introduction of lower molecular weight DOM, the exhaustion of a higher molecular weight DOM sources, or a combination of these factors. We show that the combination of high-frequency DOM character and quantity metrics have the potential to provide new insight into short-timescale DOM dynamics and can reveal previously unknown effects of LULC on the chemical nature, source, and timing of DOM export during storms.

  相似文献   

20.
We studied the chemical and optical changes inthe dissolved organic matter (DOM) from twofreshwater lakes and a Sphagnum bog afterexposure to solar radiation. Stable carbonisotopes and solid-state 13C-NMR spectraof DOM were used together with optical andchemical data to interpret results fromexperimental exposures of DOM to sunlight andfrom seasonal observations of two lakes innortheastern Pennsylvania. Solar photochemicaloxidation of humic-rich bog DOM to smaller LMWcompounds and to DIC was inferred from lossesof UV absorbance, optical indices of molecularweight and changes in DOM chemistry. Experimentally, we observed a 1.2 enrichment in 13$C and a 47% loss in aromaticC functionality in bog DOM samples exposed tosolar UVR. Similar results were observed inthe surface waters of both lakes. In latesummer hypolimnetic water in humic LakeLacawac, we observed 3 to 4.5enrichments in 13C and a 30% increase inaromatic C relative to early spring valuesduring spring mixing. These changes coincidedwith increases in molecular weight and UVabsorbance. Anaerobic conditions of thehypolimnion in Lake Lacawac suggest thatmicrobial metabolism may be turning overallochthonous C introduced during springmixing, as well as autochthonous C. Thismetabolic activity produces HMW DOM during thesummer, which is photochemically labile andisotopically distinct from allochthonous DOM orautochthonous DOM. These results suggest bothphotooxidation of allochthonous DOM in theepilimnion and autotrophic production of DOM bybacteria in the hypolimnion cause seasonaltrends in the UV absorbance of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号