首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
评价湖泊富营养化的一个综合模型   总被引:33,自引:0,他引:33  
湖泊富营养化的评价 ,即确定水体的状态属性 ,实际上是一个将定性问题定量化的多变量的综合决策过程 ,因此 ,对湖泊的富营养化程度进行评价应以综合评价为主 .在综述国内外若干综合评价方法的基础上 ,指出营养状态指数 (TSI)法应可作为湖泊富营养化评价的主要方法 ,因其可对湖泊的营养状态进行连续的数值化分级 ,从而为富营养化机理的定量研究提供坚实基础 .采用层次分析 (AHP)法确定综合评价指标中的权重分配 ,构建一综合评价模型 :TSI =W (Chla)×TSI(Chla) +W (Sd)×TSI(Sd) +W (TP)×TSI(TP)或TSIM=W (Chla)×TSIM(Chla) +W (Sd)×TSIM(Sd) +W (TP)×TSIM(TP) .此外 ,文中简要讨论了综合评价与其他统计方法如聚类分析的关系 .  相似文献   

2.
人工湿地系统在湖泊生态修复中的作用   总被引:3,自引:0,他引:3  
湖泊在维系区域水安全、生态安全和环境安全中具有重要价值。然而,受到人类非理性水土资源开发活动和全球变化的影响,部分湖泊遭到污染、无序垦殖及生态和环境需水被挤占而发生退化,其生态服务功能和经济社会价值也显著降低,对湖泊进行生态修复已成为政府部门、学术界和社会公众共同关心的资源与环境问题之一。在湖泊生态修复中,人工湿地系统可有效降低湖泊污染负荷,对湖泊生态系统的非生物环境进行有效调控;此外,人工湿地系统可对湖泊生物物种进行定向培育、增殖和保护。人工湿地系统消减湖泊污染负荷主要包括对外源性污染负荷的生态拦截和对内源性污染负荷的生态萃取。根据外源性污染负荷的入湖方式,生态拦截又包括针对无组织排放污染负荷(主要包括农田区坡面径流和城市地表径流)的带状拦截和针对有组织排放污染负荷的前置库拦截及线状拦截。在利用人工湿地系统进行湖泊生态修复过程中,需要结合湖泊生态系统的基本特征、生态退化的动力学机制和生态修复目标,按照节水、节地原则,适时、适地、适效地建设人工湿地系统及组合系统,充分发挥人工湿地系统对湖泊的综合生态修复功能。需要特别指出的是,在利用人工湿地系统进行湖泊生态修复过程中,要在多方论证和生态风险调控的基础上进行,避免外源性物种入侵对湖泊生态系统的破坏。  相似文献   

3.
湖泊富营养化模型研究进展   总被引:25,自引:0,他引:25  
自多湖泊富营养化引起人类注意以来,科学家们就设法通过使用数学模型来模拟湖泊富营养化的发生,预测湖泊对不同管理措施的响应,以便批出合理的治理措施。总的来说,湖泊富营养化模型大概经历了以下三个发展阶段:(1)单限制因子模型,如磷模型;(2)多限制因子模型,如浮游植物初级生产力估测模型;(3)生态-动力学模型,它是目前也是以后发展的主不充。随着人们对湖泊生态系统认识的提高和计算机技术的发展,生态与水动力耦合模型、面向对象模型和神经网络模型等具有良好的发展前景。  相似文献   

4.
基于云模型的鄱阳湖秋季周边湿地水体富营养化评价   总被引:3,自引:0,他引:3  
针对水体富营养化评价过程中存在随机性和模糊性的特点,基于鄱阳湖周边湿地30个采样点的实测水质数据,选取叶绿素a(Chl-a)、总磷(TP)、总氮(TN)、高锰酸盐指数(CODMn)及透明度(SD)为水质评价因子,生成云模型对鄱阳湖周边湿地水体进行富营养化评价,并与综合营养状态指数评价结果进行比较。结果表明:两种方法的评价结果存在一定差异,但都反映了鄱阳湖周边湿地水体总体上处于轻度富营养化状态。该方法能为鄱阳湖湿地水体富营养化评价提供重要的方法和手段。  相似文献   

5.
乌梁素海湿地富营养化研究进展   总被引:1,自引:0,他引:1  
本文回顾了乌梁素海湿地近20年来富营养化的研究成果。乌梁素海湿地富营养化主要状况表现为:(1)水体氮、磷平均含量已超国家地表水环境质量标准Ⅴ类要求;空间分布上,总体特征为北高南低,西高东低,局部特征则与植物分布有关;时间分布上,总体受河套地区退水和气温变化影响,局部受植物生长影响。(2)沉积物氮、磷显著富集,氮含量在水平方向上北高南低,西高东低,垂直方向上随深度增加而递减,磷含量则无一致规律。(3)藻类时空分布与氮、磷表现出较为一致的规律。近年来,藻类的过量繁殖常导致"黄苔"暴发。(4)水体有机质显著富集,与氮含量空间分布特征一致。(5)沉积物有机质主要来源于陆源输入和水生生物,与氮具有显著的同源性且空间分布特征一致;沉积物有机质显著富集,成为重要内源污染源。今后应加强乌梁素海湿地富营养化机理研究,为乌梁素海湿地恢复提供科学依据和技术支撑。  相似文献   

6.
基于神经网络简单集成的湖库富营养化综合评价模型   总被引:3,自引:1,他引:3  
根据中国水利部推荐的地表水富营养化控制标准,以叶绿素a、总磷、总氮、化学需氧量和透明度为评价指标,采用线性插值方法生成均匀分布的训练样本,建立了用于湖泊、水库富营养化综合评价的神经网络简单集成模型,其个体网络采用反向传播网络。通过递增法分别确定个体网络隐含层节点数为3,集成规模为40。所有个体网络均采用弹性反传训练算法和带动量的梯度下降学习算法。将该模型应用于巢湖富营养化综合评价,结果表明该模型有效消除了单个反向传播神经网络对初始网络权重的敏感性,泛化能力得到显著的提高。该模型的评价结果与综合营养状态指数法差异极显著,而与插值评分法差异不显著;但相关性较高,相关系数分别为0.9406和0.8891。通过对比分析,表明该模型较好地归纳了评价标准中的潜在评价规则,评价结果客观、可靠。  相似文献   

7.
Lake Varese (northern Italy) has shown deterioration in water quality since the 1960s and, as a result of the long duration of direct discharge of untreated sewage into the lake, it was classified as being hypertrophic. To recover the lake water quality, a series of externally and internally remedial actions were implemented in subsequent years. The applied sewage collecting system induced a reduction of the external P loads from 50 t P year−1 to 16t P year−1 and the weighted mean annual TP concentration decreased from 352 μg P l−1 to 85 μg P l−1, typical of eutrophic conditions. The hypolimnetic water withdrawals, adopted in the years 2000–2003, allowed a reduction of the internal P loads of about 3–5 t P. In the same years, 500t O2 were injected at depths of 4.5–8 m during the summer months. In spite of these internal remedial actions, no significant reduction of the weighted mean annual concentration of the TP could be observed, and during the summer stratification period no significant reduction of the volumes of anoxic water and of the duration of the anoxia were detected. The anoxic conditions are still the prevailing force driving the lake P-budget, maintaining the lake in eutrophic status.  相似文献   

8.
《Ecological Engineering》2005,24(4):331-340
The national goal of no net loss of wetland functions is not being met due to a variety of suboptimal policy and operational decisions. Based on data used to develop a conceptual model of wetland degradation and restoration, we address what can be done operationally to improve the prospects for replacing both the area and functions of mitigated wetlands. We use measures of hydrologic, soil, and biodiversity characteristics from reference standard sites, degraded wetlands, and created wetlands to support our premise. These data suggest that wetland diversity and variability often become more homogeneous when subjected to a set of stressors. The degradation process reduces the original heterogeneity of natural wetlands. In addition, soil characteristics and composition of biological communities of creation projects may mirror those of degraded wetlands. We recommend that scientists and managers use identical sampling protocols to collect data from reference wetlands that can be used to assess the condition of degraded wetlands and to improve the design and performance of mitigation projects.  相似文献   

9.
自然湿地生态恢复研究综述   总被引:126,自引:7,他引:126  
张永泽  王 Huan 《生态学报》2001,21(2):309-314
湿地由于具有丰富的资源、独特的牛态结构和功能而享有“自然之肾”之称。为了更好地保护和开发利用湿地,世界各国都在积极采取措施阴止湿地的退化或消失,湿地的生态恢复与重建问题已成为生态学和环境科学的研究热点,在全面综述国内外湿地生态恢复研究进展的基础上,对湿地乍态恢复研究的重点和热点进行了探讨和分析,指出我国为做好湿地生态恢复工作尚需进一步加强湿地生态恢复的方法学、基础理论、应用技术和示范推广等方面的研究。  相似文献   

10.
In this paper, we study the lake eutrophication by using a stochastic model that includes both input noise and recycling noise. The effects of the input noise (α), the recycling noise (D) and the cross-correlation between two noises (λ) in the model are discussed, respectively. Our results show: (i) the noise-induced ecological bistability (EB) expands in comparison with the deterministic case; (ii) noises still can induce EB when the recycling parameter r < 0.5; (iii) the noises can cause the regime shifts from the eutrophic state to the oligotrophic one (noise-induced oligotrophy); and (iv) the input noise can accelerate regime shifts from the oligotrophic state to the eutrophic one for the case of zero or small cross-correlation. Moreover, for the case of higher cross-correlation intensity, the mean first passage time (MFPT) as a function of α exhibits a maximum, which identifies the input noise-enhanced stability (NES) of the oligotrophic state. Finally, for whatever value of cross-correlation intensity, the theoretical results show that the recycling noise can accelerate regime shifts from the oligotrophic state to the eutrophic one.  相似文献   

11.
惠州西湖富营养化现状评价及治理探讨   总被引:7,自引:1,他引:6  
惠州西湖属于城市型浅水湖泊,本文通过历史和现状数据整理和分析,采用Carlson的营养状况指数(TSI)进行评判,表明惠州西湖处于富营养阶段。通过近几年的疏浚湖底沉积物、截流城市污水和换水等工程措施,惠州西湖水体总氮和总磷有所下降。目前西湖水生生态系统处于逆向演替的藻形湖泊时期,其水生植物受到严重破坏,湖水的透明度等指标没有得到改善。研究结果表明,今后惠州西湖应走生态修复途径,生态系统的恢复与重建和非点源污染控制是关键。  相似文献   

12.
Global climate change is recognized as a threat to species survival and the health of natural systems. Scientists worldwide are looking at the ecological and hydrological impacts resulting from climate change. Climate change will make future efforts to restore and manage wetlands more complex. Wetland systems are vulnerable to changes in quantity and quality of their water supply, and it is expected that climate change will have a pronounced effect on wetlands through alterations in hydrological regimes with great global variability. Wetland habitat responses to climate change and the implications for restoration will be realized differently on a regional and mega-watershed level, making it important to recognize that specific restoration and management plans will require examination by habitat. Floodplains, mangroves, seagrasses, saltmarshes, arctic wetlands, peatlands, freshwater marshes and forests are very diverse habitats, with different stressors and hence different management and restoration techniques are needed. The Sundarban (Bangladesh and India), Mekong river delta (Vietnam), and southern Ontario (Canada) are examples of major wetland complexes where the effects of climate change are evolving in different ways. Thus, successful long term restoration and management of these systems will hinge on how we choose to respond to the effects of climate change. How will we choose priorities for restoration and research? Will enough water be available to rehabilitate currently damaged, water-starved wetland ecosystems? This is a policy paper originally produced at the request of the Ramsar Convention on Wetlands and incorporates opinion, interpretation and scientific-based arguments.  相似文献   

13.
There has been little discussion of how and when to integrate wildlife science into ecological restoration projects. The recent emergence of wetland ecosystem restoration offers an opportunity to use wildlife science to increase the probability of a project being successful. This paper traces the evolution of wetland ecosystem restoration in North America and proposes three roles for wildlife science in wetland ecosystem restoration: (1) contribute to conceptual ecosystem models, (2) develop quantitative performance measures and restoration targets that track the progress of restoration, and (3) achieve social feasibility by sustaining long-term public support for a project. The extensive knowledge base for many species of wildlife makes them especially useful for contributing to conceptual ecosystem models. Wildlife species are often the subject of long-term monitoring and research because they have commercial value, are conspicuous, or have aesthetic appeal. Wildlife parameters can be good performance measures for large-scale restoration projects because some species integrate information over large spatial scales and are long-lived. Parameters associated with threatened or endangered wildlife species should get special consideration as performance measures because the information will meet multiple needs rather than just those of the conceptual ecosystem model. Finally, wetland ecosystem restoration projects need to sustain funding over decades to ensure the restored system is self-sustaining. Wildlife are a valued resource that can help achieve the social feasibility of a project by providing a way to communicate complex science in terms that society understands and values.  相似文献   

14.
湿地生态单元定义及其在湿地恢复中的应用   总被引:1,自引:0,他引:1  
生态单元的概念在生态系统的环境保护和生物保护中被广泛应用。通过阐述湿地生态单元的定义、内涵和外延,分析了湿地生态单元的特征,介绍了湿地生态系统的内部生态单元、湿地"外援"生态单元和人工重建湿地生态单元等在湿地恢复中的应用案例,并对湿地生态单元未来需要关注的研究方向进行了总结,以期为湿地保护与精细化管理提供理论基础和科学依据。  相似文献   

15.
农田开垦对三江平原湿地土壤种子库影响及湿地恢复潜力   总被引:2,自引:0,他引:2  
种子库是湿地植被恢复的重要途径之一,不同时期的耕作土壤中残留的种子对开垦湿地恢复具有重要的作用.本文采用温室萌发法在两种水分条件下对三江平原天然湿地、不同开垦年限湿地种子库结构和规模进行了研究,以了解不同开垦年限湿地种子库特征及其在湿地植被恢复中的潜力.本次实验共萌发物种50种,随着开垦年限增加,萌发物种逐渐减少,天然湿地、开垦1年、3年、10年、20年的湿地分别为34种、31种、21种、21种和8种,萌发物种数与种子库规模均表现出极显著差异(F1=8.32,F2=5.946,P<0.001).种子库密度以天然湿地和开垦1年湿地最大,分别为7624粒/m2,9836粒/m2.随着开垦年限增加,种子库规模逐渐减小,开垦3年、10年种子库密度为4336粒/m2,4872粒/m2.开垦20 a后,显著减少为432粒/m2.湿润条件下萌发物种数及种子密度显著高于淹水处理,种子库具有明显的分层现象,0-5 cm土层种子库规模显著高于5-10 cm.小叶章(Calamagrostis angustifolia)作为该地区优势物种,由最初的1192粒/m2,经过20 a开垦后在种子库中消失.研究表明,在一定的开垦年限范围内,开垦湿地土壤中仍然保留大量的湿地物种种子,在湿地恢复中具有重要的作用.  相似文献   

16.

Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake’s ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970’s, most of lakes were in the mesotrophic status, mesotrophic water area accounted for 91.8%. With the nine year of 1978–1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.

Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.

Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.

  相似文献   

17.
Current status and future tendency of lake eutrophication in China   总被引:8,自引:0,他引:8  
Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophica-tion process, water quality decreased and lake's ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970's, most of lakes were in the mesotrophic status, mesotrophic water area accounted for 91.8%. With the nine year of 1978-1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hyper trophic status of the 40 surveyed lakes. Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now. Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.  相似文献   

18.
Current status and future tendency of lake eutrophication in China   总被引:3,自引:0,他引:3  
Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake's ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970's, most of lakes were in the mesotrophic status,mesotrophic water area accounted for 91.8%. With the nine year of 1978-1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.  相似文献   

19.
20.
Lessmann  Dieter  Fyson  Andrew  Nixdorf  Brigitte 《Hydrobiologia》2003,506(1-3):753-758
Hydrobiologia - Acidic mining lakes offer an opportunity to investigate ecological development under extreme geochemical conditions. Low pH combined with high ionic and metal concentrations allows...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号