首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Animal production systems convert plant protein into animal protein. Depending on animal species, ration and management, between 5% and 45 % of the nitrogen (N) in plant protein is converted to and deposited in animal protein. The other 55%–95% is excreted via urine and feces, and can be used as nutrient source for plant (= often animal feed) production. The estimated global amount of N voided by animals ranges between 80 and 130 Tg N per year, and is as large as or larger than the global annual N fertilizer consumption. Cattle (60%), sheep (12%) and pigs (6%) have the largest share in animal manure N production.The conversion of plant N into animal N is on average more efficient in poultry and pork production than in dairy production, which is higher than in beef and sheep production. However, differences within a type of animal production system can be as large as differences between types of animal production systems, due to large effects of the genetic potential of animals, animal feed and management. The management of animals and animal feed, together with the genetic potential of the animals, are key factors to a high efficiency of conversion of plant protein into animal protein.The efficiency of the conversion of N from animal manure, following application to land, into plant protein ranges between 0 and 60%, while the estimated global mean is about 15%. The other 40%–100% is lost to the wider environment via NH3 volatilization, denitrification, leaching and run-off in pastures or during storage and/or following application of the animal manure to land. On a global scale, only 40%–50% of the amount of N voided is collected in barns, stables and paddocks, and only half of this amount is recycled to crop land. The N losses from animal manure collected in barns, stables and paddocks depend on the animal manure management system. Relative large losses occur in confined animal feeding operations, as these often lack the land base to utilize the N from animal manure effectively. Losses will be relatively low when all manure are collected rapidly in water-tight and covered basins, and when they are subsequently applied to the land in proper amounts and at the proper time, and using the proper method (low-emission techniques).There is opportunity for improving the N conversion in animal production systems by improving the genetic production potential of the herd, the composition of the animal feed, and the management of the animal manure. Coupling of crop and animal production systems, at least at a regional scale, is one way to high N use efficiency in the whole system. Clustering of confined animal production systems with other intensive agricultural production systems on the basis of concepts from industrial ecology with manure processing is another possible way to improve N use efficiency.  相似文献   

2.
Animal production systems convert plant protein into animal protein. Depending on animal species, ration and management, between 5% and 45 % of the nitrogen (N) in plant protein is converted to and deposited in animal protein. The other 55%-95% is excreted via urine and feces, and can be used as nutrient source for plant (= often animal feed) production. The estimated global amount of N voided by animals ranges between 80 and 130 Tg N per year, and is as large as or larger than the global annual N fertilizer consumption. Cattle (60%), sheep (12%) and pigs (6%) have the largest share in animal manure N production.The conversion of plant N into animal N is on average more efficient in poultry and pork production than in dairy production, which is higher than in beef and sheep production. However, differences within a type of animal production system can be as large as differences between types of animal production systems, due to large effects of the genetic potential of animals, animal feed and management. The management of animals and animal feed, together with the genetic potential of the animals, are key factors to a high efficiency of conversion of plant protein into animal protein.The efficiency of the conversion of N from animal manure, following application to land, into plant protein ranges between 0 and 60%, while the estimated global mean is about 15%. The other 40%- 100% is lost to the wider environment via NH3 volatilization, denitrification, leaching and run-off in pastures or during storage and/or following application of the animal manure to land. On a global scale, only 40%-50% of the amount of N voided is collected in barns, stables and paddocks, and only half of this amount is recycled to crop land. The N losses from animal manure collected in barns, stables and paddocks depend on the animal manure management system. Relative large losses occur in confined animal feeding operations, as these often lack the land base to utilize the N from animal manure effectively.Losses will be relatively low when all manure are collected rapidly in water-tight and covered basins, and when they are subsequently applied to the land in proper amounts and at the proper time, and using the proper method (low-emission techniques).There is opportunity for improving the N conversion in animal production systems by improving the genetic production potential of the herd, the composition of the animal feed, and the management of the animal manure. Coupling of crop and animal production systems, at least at a regional scale, is one way to high N use efficiency in the whole system. Clustering of confined animal production systems with other intensive agricultural production systems on the basis of concepts from industrial ecology with manure processing is another possible way to improve Nuse efficiency.  相似文献   

3.
Animal production systems convert plant protein into animal protein. Depending on animal species, ration and management, between 5% and 45 % of the nitrogen (N) in plant protein is converted to and deposited in animal protein. The other 55%-95% is excreted via urine and feces, and can be used as nutrient source for plant (= often animal feed) production. The estimated global amount of N voided by animals ranges between 80 and 130 Tg N per year, and is as large as or larger than the global annual N fertilizer consumption. Cattle (60%), sheep (12%) and pigs (6%) have the largest share in animal manure N production. The conversion of plant N into animal N is on average more efficient in poultry and pork production than in dairy production, which is higher than in beef and sheep production. However, differences within a type of animal production system can be as large as differences between types of animal production systems, due to large effects of the genetic potential of animals, animal feed and management. The management of animals and animal feed, together with the genetic potential of the animals, are key factors to a high efficiency of conversion of plant protein into animal protein. The efficiency of the conversion of N from animal manure, following application to land, into plant protein ranges between 0 and 60%, while the estimated global mean is about 15%. The other 40%-100% is lost to the wider environment via NH3 volatilization, denitrification, leaching and run-off in pastures or during storage and/or following application of the animal manure to land. On a global scale, only 40%-50% of the amount of N voided is collected in barns, stables and paddocks, and only half of this amount is recycled to crop land. The N losses from animal manure collected in barns, stables and paddocks depend on the animal manure management system. Relative large losses occur in confined animal feeding operations, as these often lack the land base to utilize the N from animal manure effectively. Losses will be relatively low when all manure are collected rapidly in water-tight and covered basins, and when they are subsequently applied to the land in proper amounts and at the proper time, and using the proper method (low-emission techniques). There is opportunity for improving the N conversion in animal production systems by improving the genetic production potential of the herd, the composition of the animal feed, and the management of the animal manure. Coupling of crop and animal production systems, at least at a regional scale, is one way to high N use efficiency in the whole system. Clustering of confined animal production systems with other intensive agricultural production systems on the basis of concepts from industrial ecology with manure processing is another possible way to improve N use efficiency.  相似文献   

4.
Government policy in many countries has been to promote manure management methods to reduce the negative impacts related to water and air pollution. The central strategy of encouraging manure as a fertiliser rather than treating it as a waste, is under threat from new concerns on public health and especially food quality. Restrictions on manure applications to certain food crops and the stipulation of treatment to 70 °C for 1 h (in the case of manure products) represent barriers to the use of such material as a useful organic product in the farming and horticultural industries. However, the sensible development of spreading plans in which high and low risk land is identified can enable appropriate and effective treatment for each situation and minimise overall cost. In the high risk situations, processes based on heat treatment remain the most reliable but there still remains the need to ensure a minimum temperature to ensure a satisfactory treatment. Direct application of heat available from biogas coupled with heat recovery may make thermal treatment of effluents a viable option where no effective environmental friendly alternatives exist.  相似文献   

5.
城市居民食物氮消费变化及其环境负荷——以厦门市为例   总被引:2,自引:0,他引:2  
于洋  崔胜辉  赵胜男  孟凡鑫  李飞 《生态学报》2012,32(19):5953-5961
食物消费是城市养分流动的重要环节,以厦门市为例,分析了1988—2009年居民食物氮素消费的变化特点,分析与其变化相关的经济、社会因素,并探讨了居民食物氮素消费变化所带来的环境负荷。研究结果表明,厦门市人均食物氮消费量变化与食物消费量变化并不完全一致,人均氮消费量2000年以前维持在3.29 kg N.人-1.a-1,2000年以后呈现波动性的增长,2004年达到最高值4.00 kg N.人-1.a-1。厦门市食物氮素消费总量增长幅度较大,由1988年的0.54万t增至2009年的1.50万t。同时,粮食在食物氮消费量中所占比例由45.5%下降到15.9%。畜禽肉、奶制品所占比例分别由25.0%和0.4%上升至29.8%和8.8%。通过将相关经济、社会因素与居民食物氮消费量进行相关性分析表明,人均可支配收入、食物价格指数、具有大学学历以上人口比重均与其联系较为密切,呈正相关;恩格尔系数、平均家庭人口数与居民食物氮消费量呈负相关。通过选取1988、1994、2001、2008年分析居民食物氮素消费造成的环境氮负荷发现,由其带来的环境氮负荷量由3509.12t增加至7629.36t,约90%的氮素进入了土壤和水体。其中,进入土壤的氮素占进入环境氮总量的比例由37%增长到60%,进入水体的氮素比例由57%降至35%。  相似文献   

6.
7.
8.
An international symposium on diet as an environmental factor in development of insulin-dependent diabetes mellitus (IDDM) was held in Ottawa, Ont., Canada, September 1989. Several environmental factors such as viruses and chemicals, as well as diet modifications per se, were reviewed in both human and animal diabetes. Although the pathophysiology in the BB rat and nonobese diabetic (NOD) mouse may have different immunological mechanisms, both these animal syndromes of spontaneous IDDM are markedly affected by diet. In them, cereal-based rodent diets are the most diabetogenic and hydrolyzed casein-based purified diets are least diabetogenic. In two different NOD mouse colonies, diabetogenicity of cereal-based diets can be markedly decreased by extracting the diet with chloroform-methanol or water, reflecting either the different composition of the diets used in each colony or the chemical extraction and (or) alteration of certain diabetogenic agents. Thus, dietary lipids can be potent immune system modulators in several systems and the role of chloroform-methanol soluble agents in initiation and (or) promotion of the disease process is being studied. Attention was focused on protein sources previously identified by some groups as diabetogenic such as skim milk powder and wheat products, both of which can be found in natural ingredient rodent feeds. Circulating antibodies to dietary antigens such as bovine serum albumin and (crude) wheat gliadin may be elevated in diabetes-prone rodents and newly diagnosed patients, but their relationship to the pathogenesis of IDDM remains to be established. Because diet components can clearly influence the expression of the diabetic syndromes in the BB rat and NOD mouse, it will be crucial to identify the chemical nature of such components as a first step in understanding their mode of action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Duckweeds, plants of the Lemnaceae family, have the distinction of being the smallest angiosperms in the world with the fastest doubling time. Together with its naturally ability to thrive on abundant anthropogenic wastewater, these plants hold tremendous potential to helping solve critical water, climate and fuel issues facing our planet this century. With the conviction that rapid deployment and optimization of the duckweed platform for biomass production will depend on close integration between basic and applied research of these aquatic plants, the first International Conference on Duckweed Research and Applications (ICDRA) was organized and took place in Chengdu, China, from October 7th to 10th of 2011. Co-organized with Rutgers University of New Jersey (USA), this Conference attracted participants from Germany, Denmark, Japan, Australia, in addition to those from the US and China. The following are concise summaries of the various oral presentations and final discussions over the 2.5 day conference that serve to highlight current research interests and applied research that are paving the way for the imminent deployment of this novel aquatic crop. We believe the sharing of this information with the broad Plant Biology community is an important step toward the renaissance of this excellent plant model that will have important impact on our quest for sustainable development of the world.  相似文献   

11.
12.
13.
14.
植物多酚在环境保护与农业生产中的应用   总被引:6,自引:1,他引:5  
植物多酚是一类广泛存在于植物体内的次生代谢物.自然界含多酚的常见植物已超过600种.随着植物多酚化学结构鉴定及其理化性状的深入研究,人类对植物多酚的应用由传统的化工和医药等领域扩展到了农业和环境等多个领域.文中就植物多酚对植物抗逆境能力以及在环境污染控制和农业生产等领域的应用进行了综述.  相似文献   

15.
16.
南京城市化食物生产消费系统氮素流动变化   总被引:2,自引:0,他引:2  
城市化的发展对食物生产消费过程中氮素的流动产生了一定的影响。以1995—2012年南京市食物生产消费变化为基础,分析了食物生产消费过程中氮素的流动变化及其引起的环境负荷。结果表明,农村和城镇人均食物氮消费量分别由1995年的5.09 kg人~(-1)a~(-1)和3.04 kg人~(-1)a~(-1)下降至2012年的4.11 kg人~(-1)a~(-1)和2.65 kg人~(-1)a~(-1);与1995年相比,南京市食物消费代价降低了39.29%;农田系统和畜禽养殖系统氮素综合利用率由1995年的18.71%增加至2012年的24.34%,整体低于全国水平,大量的氮素进入环境;1995年食物链引起氮素的环境负荷为100.49 Gg N/a,到2012年下降至69.90 Gg N/a,下降了30.44%。南京城市化的发展增加了食物进口,会使食物生产地的氮环境负荷大幅度增加。  相似文献   

17.
Guidelines for the implantation of cardiac implantable electronic devices (CIEDs) have evolved since publication of the initial ACC/AHA pacemaker guidelines in 1984 [1]. CIEDs have evolved to include novel forms of cardiac pacing, the development of implantable cardioverter defibrillators (ICDs) and the introduction of devices for long term monitoring of heart rhythm and other physiologic parameters. In view of the increasing complexity of both devices and patients, practice guidelines, by necessity, have become increasingly specific. In 2018, the ACC/AHA/HRS published Guidelines on the Evaluation and Management of Patients with Bradycardia and Cardiac Conduction Delay [2], which were specific recommendations for patients >18 years of age. This age-specific threshold was established in view of the differing indications for CIEDs in young patients as well as size-specific technology factors. Therefore, the following document was developed to update and further delineate indications for the use and management of CIEDs in pediatric patients, defined as ≤21 years of age, with recognition that there is often overlap in the care of patents between 18 and 21 years of age.This document is an abbreviated expert consensus statement (ECS) intended to focus primarily on the indications for CIEDs in the setting of specific disease/diagnostic categories. This document will also provide guidance regarding the management of lead systems and follow-up evaluation for pediatric patients with CIEDs. The recommendations are presented in an abbreviated modular format, with each section including the complete table of recommendations along with a brief synopsis of supportive text and select references to provide some context for the recommendations. This document is not intended to provide an exhaustive discussion of the basis for each of the recommendations, which are further addressed in the comprehensive PACES-CIED document [3], with further data easily accessible in electronic searches or textbooks.  相似文献   

18.
For four days and four nights, with almost 50 presentations and more than 175 posters, the 5th European Nitrogen Fixation Conference continued a tradition of excellence, bringing scientists from diverse fields such as microbiology, biochemistry, computational genomics, and plant physiology together to address the complex problems associated with biological nitrogen fixation (BNF). The conference was hosted by the John Innes Center and the University of East Anglia in Norwich, England and took place from September 6 through 10, 2002. A diverse range of topics was presented, from the evolution of rhizobial genomes to the plant genes involved in bacterial and fungal symbiosis, to the structure of nitrogenase, and to the means by which nitrogen is shuttled between the symbiotic bacteria and the plant. Additionally, sessions involving broader issues, such as nitrogen fertilizer use and work being done in developing countries, brought home the importance of the research being carried out in BNF around the world.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号