首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species importance is the influence of N2-fixing red alder (Alnus rubra) on nutrient cycling in the forests of the Pacific Northwest. To understand the influence of red alder on watershed nutrient export, we studied the chemistry of 26 small watershed streams within the Salmon River basin of the Oregon Coast Range. Nitrate and dissolved organic nitrogen (DON) concentrations were positively related to broadleaf cover (dominated by red alder: 94% of basal area), particularly when near-coastal sites were excluded (r 2 = 0.65 and 0.68 for nitrate-N and DON, respectively). Nitrate and DON concentrations were more strongly related to broadleaf cover within entire watersheds than broadleaf cover within the riparian area alone, which indicates that leaching from upland alder stands plays an important role in watershed nitrogen (N) export. Nitrate dominated over DON in hydrologic export (92% of total dissolved N), and nitrate and DON concentrations were strongly correlated. Annual N export was highly variable among watersheds (2.4–30.8 kg N ha–1 y–1), described by a multiple linear regression combining broadleaf and mixed broadleaf–conifer cover (r2 = 0.74). Base cation concentrations were positively related to nitrate concentrations, which suggests that nitrate leaching increases cation losses. Our findings provide evidence for strong control of ecosystem function by a single plant species, where leaching from N saturated red alder stands is a major control on N export from these coastal watersheds.  相似文献   

2.
In this study, we document a functional regime shift in stream inorganic nitrogen (N) processing indicated by a major change in N export from a forested watershed. Evidence from 36 years of data following experimental clearcut logging at Coweeta Hydrologic Laboratory, NC, suggests that forest disturbance in this area can cause elevation of dissolved inorganic N (DIN) loss lasting decades or perhaps longer. This elevation of N export was apparently caused by an initial pulse of organic matter input, reduced vegetation uptake, increased mineralization of soil organic N, and N fixation by black locust-associated bacteria following clearcut logging. In forested reference watersheds at Coweeta, maximum DIN concentration occurs in summer when base flow is low, but the clearcut watershed shifted to a pattern of maximum winter DIN concentration. The seasonal pattern of DIN concentration and export from reference watersheds can be explained by terrestrial and in-stream processes, but following clearcutting, elevated DIN availability saturated both terrestrial and in-stream uptake, and the N export regime became dominated by hydrologic transport. We suggest that the long-term elevation of stream DIN concentration and export along with the changes in seasonality of DIN export and the relationship between concentration and discharge represent a functional regime shift initiated by forest disturbance.  相似文献   

3.
Fluxes of dissolved and particulate nitrogen (N) and phosphorus(P) from three adjacent watersheds were quantified with ahigh-resolution sampling program over a five-year period. The watershedsvary by an order of magnitude in area (12,875, 7968 and 1206 ha), and inall three watersheds intensive agriculture comprises > 90% ofland. Annual fluxes of dissolved N and P per unit watershed area (exportcoefficients) varied 2X among watersheds, and patterns were notdirectly related to watershed size. Over the five-year period, meanannual flux of soluble reactive P (SRP) was 0.583 kg P ·ha–1 · yr–1 from the smallestwatershed and 0.295 kg P · ha–1 ·yr–1 from the intermediate-sized watershed, which hadthe lowest SRP flux. Mean annual flux of nitrate was 20.53 kg N ·ha–1 · yr–1 in the smallestwatershed and 44.77 kg N · ha–1 ·yr–1 in the intermediate-sized watershed, which had thehighest nitrate flux. As a consequence, the export ratio of dissolvedinorganic N to SRP varied from 80 (molar) in the smallest watershed to335 in the intermediate-sized watershed. Because most N was exported asnitrate, differences among watersheds in total N flux were similar tothose for nitrate. Hence, the total N:P export ratio was 42(molar) for the smallest watershed and 109 for the intermediate-sizedwatershed. In contrast, there were no clear differences among watershedsin the export coefficients of particulate N, P, or carbon, even though> 50% of total P was exported as particulate P in allwatersheds. All nutrient fractions were exported at higher rates in wetyears than in dry years, but precipitation-driven variability in exportcoefficients was greater for particulate fractions than for dissolvedfractions.Examination of hydrological regimes showed that, for all nutrientfractions, most export occurred during stormflow. However, theproportion of nitrate flux exported as baseflow was much greater thanthe proportion of SRP flux exported as baseflow, for all threewatersheds (25–37% of nitrate exported as baseflow vs.3–13% of SRP exported as baseflow). In addition, baseflowcomprised a greater proportion of total discharge in theintermediate-sized watershed (43.7% of total discharge) than theother two watersheds (29.3 and 30.1%). Thus, higher nitrateexport coefficients in the intermediate-sized watershed may haveresulted from the greater contribution of baseflow in this watershed.Other factors potentially contributing to higher nitrate exportcoefficients in this watershed may be a thicker layer of loess soils anda lower proportion of riparian forest than the other watersheds. Theamong-watershed variability in SRP concentrations and exportcoefficients remains largely unexplained, and might represent theminimum expected variation among similar agriculturalwatersheds.  相似文献   

4.
Long-term watershed research conducted in Shenandoah National Park (SNP) in Virginia and elsewhere in the eastern U.S. indicates that annual export of dissolved nitrogen (N) from gaged forested watersheds to surface waters increases dramatically in response to vegetation disturbances. Dissolved N leakage is a common, well-documented response of small forested watersheds to logging in the larger region, while recent defoliation outbreaks of the gypsy moth ( Lymantria dispar) larva in the deciduous forests of SNP have been shown to generate similar biogeochemical responses. A recent modeling analysis further suggests that a parsimonious, empirical, unit N export response function (UNERF) model can explain large percentages of the temporal variation in annual N export from a group of small gaged forested watersheds in the years following disturbance. The empirical UNERF modeling approach is completely analogous to the unit hydrograph technique for describing storm runoff, with the model representing annual N export as a linear deterministic process both in space and in time. The purposes of this analysis are to (1) test the applicability of the UNERF model using quarterly streamwater nitrate data from a group of ungaged watersheds in SNP; (2) demonstrate a park-wide application of a regional UNERF model that references the geographic distributions of bedrock geology and the timing and extent of gypsy moth defoliation over the entire SNP area; and (3) visualize the temporal and spatial patterns in vegetation disturbance and annual dissolved N export through the use of computer animation software. During water year 1992, the year of peak defoliation, our modeling study suggests that park-wide export had transiently increased by 1700% from a baseline rate of about 0.1 kg/ha/year. SNP forests appear to be characteristic of other N-limited second-growth forests in the eastern U.S. that leak little N under undisturbed conditions, despite receiving relatively large inputs of N from atmospheric deposition sources. Vegetation disturbances can apparently cause major changes in N input-output balances with potentially important ramifications for low-order forest streams and downstream receiving waters.  相似文献   

5.
Wetland conservation and restoration contribute to improved watershed functions through providing both water quantity benefits in terms of flood attenuation and water quality benefits such as retention of sediment and nutrients. However, it is important to quantify these environmental benefits for informed decision making. This study uses a “hydrologic equivalent wetland” concept in the Soil and Water Assessment Tool to examine the effects of various wetland restoration scenarios on stream flow and sediment at a watershed scale. The modeling system was applied to the 25,139 ha Broughton’s Creek watershed in western Manitoba in Canada. As a representative prairie watershed, the Broughton’s Creek watershed experienced historic wetland losses from 2,998 ha in 1968 to 2,379 ha in 2005. Modeling results showed that if wetlands in the Broughton’s Creek watershed can be restored to the 1968 level, the peak discharge and average sediment loading can be reduced by 23.4 and 16.9%, respectively at the watershed outlet. Based on wetland and stream drainage areas estimated by the model and empirical nutrient export coefficients, the corresponding water quality benefits in terms of reductions in total phosphorus and nitrogen loadings were estimated at 23.4%. The modeling results are helpful for designing effective watershed restoration strategies in the Broughton’s Creek watershed. The developed methodology can be also applied to other study areas for examining the environmental effects of wetland restoration scenarios.  相似文献   

6.
Wildfires alter nitrogen (N) cycling in Mediterranean-type ecosystems, resetting plant and soil microbial growth, combusting plant biomass to ash, and enhancing N availability in the upper soil layer. This ash and soil N pool (that is, wildfire N) is susceptible to loss from watersheds via runoff and leaching during post-fire rains. Plant and soil microbial recovery may mitigate these losses by sequestering N compounds in new biomass, thereby promoting landscape N retention in N-limited chaparral ecosystems. We investigated the relative balance between wildfire N loss, and plant and soil microbial N uptake and stream N export for an upland chaparral watershed in southern California that burned (61%) in a high-intensity wildfire in 2009 by using a combination of stream, vegetation, soil microbial, and remote sensing analyses. Soil N in the burn scar was 440% higher than unburned soil N in the beginning of the first post-fire wet season and returned within 66 days to pre-fire levels. Stream N export was 1480% higher than pre-fire export during the first post-fire rain and returned within 106 days over the course of the following three rainstorms to pre-fire levels. A watershed-scale N mass balance revealed that 52% of wildfire N could be accounted for in plant and soil microbial growth, whereas 1% could be accounted for in stream export of dissolved nitrogen.  相似文献   

7.
Nitrogen Fluxes and Retention in Urban Watershed Ecosystems   总被引:8,自引:1,他引:7  
Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input–output N budgets for suburban, forested, and agricultural watersheds. The work is a product of the Baltimore Ecosystem Study, a long-term study of urban and suburban ecosystems, and a component of the US National Science Foundations long-term ecological research (LTER) network. As expected, urban and suburban watersheds had much higher N losses than did the completely forested watershed, with N yields ranging from 2.9 to 7.9 kg N ha–1 y–1 in the urban and suburban watersheds compared with less than 1 kg N ha–1 y–1 in the completely forested watershed. Yields from urban and suburban watersheds were lower than those from an agricultural watershed (13–19.8 kg N ha–1 y–1). Retention of N in the suburban watershed was surprisingly high, 75% of inputs, which were dominated by home lawn fertilizer (14.4 kg N ha–1 y–1) and atmospheric deposition (11.2 kg N ha–1 y–1). Detailed analysis of mechanisms of N retention, which must occur in the significant amounts of pervious surface present in urban and suburban watersheds, and which include storage in soils and vegetation and gaseous loss, is clearly warranted.  相似文献   

8.
There is growing concern that available base cation pools in soil are declining in eastern North America and that some forests are approaching nitrogen (N) saturation due to the combined effects of acid deposition and harvesting. To assess these concerns, elemental mass balances for calcium (Ca), magnesium (Mg), potassium (K), and N were conducted over a 17-year period in a representative mixed hardwood forest (HP4) in the Muskoka-Haliburton region in central Ontario, Canada. On average, 76% of the N measured in bulk deposition, which is a conservative estimate of total N deposition, was retained in HP4, with tree uptake accounting for over half of the retained N. Year-to-year variations in annual NO3 export were affected by climate variations, although the low annual NO3-N concentrations (80–156 g/L) suggest that HP4 is not approaching N saturation. Losses of Ca, Mg, and K in stream export plus accumulation in trees (more than 12 cm in diameter at breast height) exceeded inputs in deposition by 296, 76.2, and 53.6 kg/ha, respectively, over the 17-year period. Inclusion of mineral weathering estimates obtained using PROFILE, zirconium (Zr) depletion, and total analysis correlation failed to balance Ca losses from HP4, and calculations indicate that between 98 and 145 kg/ha (depending on mineral weathering estimate) was lost from the soil exchangeable pool between 1983 and 1999. These losses were supported by repeated field measurements, which showed that the exchangeable Ca concentrations and soil pH decreased over the 17-year period, particularly in the upper soil horizons. When mineral weathering estimates are included, mass balance calculations generally indicated that there was no net loss of Mg and K from HP4, which was confirmed by our soil measurements. At present, there is sufficient Ca in the soil exchangeable pool to sustain forest growth at HP4; however, continued losses of Ca due to leaching and harvesting at the present rate may ultimately threaten the health and productivity of the forest within just a few decades.  相似文献   

9.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

10.
The Adirondack region of New York is characterized by soils and surface waters that are sensitive to inputs of strong acids, receiving among the highest rates of atmospheric nitrogen (N) deposition in the United States. Atmospheric N deposition to Adirondack ecosystems may contribute to the acidification of soils through losses of exchangeable basic cations and the acidification of surface waters in part due to increased mobility of nitrate (NO3). This response is particularly evident in watersheds that exhibit nitrogen saturation. To evaluate the contribution of atmospheric N deposition to the N export and the capacity of lake-containing watersheds to remove, store, or release N, annual N input–output budgets were estimated for 52 lake-containing watersheds in the Adirondack region from 1998 to 2000. Wet N deposition was used as the N input and the lake N discharge loss was used as the N output based on modeled hydrology and measured monthly solute concentrations. Annual outputs were also estimated for dissolved organic carbon (DOC). Wet N deposition increased from the northeast to the southwest across the region. Lake N drainage losses, which exhibited a wider range of values than wet N deposition, did not show any distinctive spatial pattern, although there was some evidence of a relationship between wet N deposition and the lake N drainage loss. Wet N deposition was also related to the fraction of N removed or retained within the watersheds (i.e., the fraction of net N hydrologic flux relative to wet N deposition, calculated as [(wet N deposition minus lake N drainage loss)/wet N deposition]). In addition to wet N deposition, watershed attributes also had effects on the exports of NO3, ammonium (NH4+), dissolved organic nitrogen (DON), and DOC, the DOC/DON export ratio, and the N flux removed or retained within the watersheds (i.e., net N hydrologic flux, calculated as [wet N deposition less lake N drainage loss]). Elevation was strongly related with the lake drainage losses of NO3, NH4+, and DON, net NO3 hydrologic flux (i.e., NO3 deposition less NO3 drainage loss), and the fraction of net NO3 hydrologic flux, but not with the DOC drainage loss. Both DON and DOC drainage losses from the lakes increased with the proportion of watershed area occupied by wetlands, with a stronger relationship for DOC. The effects of wetlands and forest type on NO3 flux were evident for the estimated NO3 fluxes flowing from the watershed drainage area into the lakes, but were masked in the drainage losses flowing out of the lakes. The DOC/DON export ratios from the lake-containing watersheds were in general lower than those from forest floor leachates or streams in New England and were intermediate between the values of autochthonous and allochthonous dissolved organic matter (DOM) reported for various lakes. The DOC/DON ratios for seepage lakes were lower than those for drainage lakes. In-lake processes regulating N exports may include denitrification, planktonic depletion, degradation of DOM, and the contribution of autochthonous DOM and the influences of in-lake processes were also reflected in the relationships with hydraulic retention time. The N fluxes removed or stored within the lakes substantially varied among the lakes. Our analysis demonstrates that for these northern temperate lake-containing watershed ecosystems, many factors, including atmospheric N deposition, landscape features, hydrologic flowpaths, and retention in ponded waters, regulated the spatial patterns of net N hydrologic flux within the lake-containing watersheds and the loss of N solutes through drainage waters.  相似文献   

11.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

12.
Experimental and theoretical work emphasize the role of plant nutrient uptake in regulating ecosystem nutrient losses and predict that forest succession, ecosystem disturbance, and continued inputs of atmospheric nitrogen (N) will increase watershed N export. In ecosystems where snowpack insulates soils, soil-frost disturbances resulting from low or absent snowpack are thought to increase watershed N export and may become more common under climate-change scenarios. This study monitored watershed N export from the Hubbard Brook Experimental Forest (HBEF) in response to a widespread, severe soil-frost event in the winter of 2006. We predicted that nitrate (NO3 ) export following the disturbance would be high compared to low background streamwater NO3 export in recent years. However, post-disturbance annual NO3 export was the lowest on record from both reference (undisturbed) and treated experimental harvest or CaSiO3 addition watersheds. These results are consistent with other studies finding greater than expected forest NO3 retention throughout the northeastern US and suggest that changes over the last five decades have reduced impacts of frost events on watershed NO3 export. While it is difficult to parse out causes from a complicated array of potential factors, based on long-term records and watershed-scale experiments conducted at the HBEF, we propose that reduced N losses in response to frost are due to a combination of factors including the long-term legacies of land use, process-level alterations in N pathways, climate-driven hydrologic changes, and depletion of base cations and/or reduced soil pH due to cumulative effects of acid deposition.  相似文献   

13.
Summary Data on the dry matter distribution and nutrient reserves (N, P, S, Cl, K, Ca, Mg and Na) in the standing biomass of a grassed-down 14 year-old apple orchard are presented together with mean estimates of nutrient inputs, returns and losses over a 2 year period.The major inputs of N P K and S were through fertilizer additions. The major inputs of Na and Cl were in bulk precipitation plus irrigation whilst both sources were important for Mg and Ca. Total inputs by precipitation plus irrigation plus fertilizer in kg/ha/yr were: N, 81; P, 20; S, 42; Cl, 58; K, 64; Ca, 35; Mg, 10 and Na, 33. Nutrient returns to the orchard floor were dominated by those from returns of herbage clippings orginating from the mowing of the orchard pasture. Autumn leaf fall also contributed significant quantities to the total nutrient returns. Total nutrient returns to the orchard floor through petal fall, fruit drop, leaf fall, foliar leaching (includes leaf washing) and pasture clippings in kg/ha/yr were: N, 545; P, 33; S, 41; Cl, 107; K, 442; Ca, 147; Mg, 35 and Na, 16. The major loss of Na, Mg, Ca, Cl and S was through leaching (this may include a certain amount of chemical weathering). In contrast, the major loss of P and K was in the harvested fruit crop, while for N, losses were about equally divided between the fruit crop and leaching. Total nutrient losses from the orchard by removal of the fruit crop and pruning wood plus leaching losses were estimated in kg/ha/yr at: N, 58; P, 5; S, 28; Cl, 81; K, 124; Ca, 55; Mg, 39 and Na, 80. Inputs minus losses in kg/ha/yr were positive for N, P and S(+23, +16 and +14 respectively and negative for Cl, K, Ca, Mg and Na (–24, –60, –19, –30 and –47 respectively).  相似文献   

14.
Nitrogen budgets of late successional forested stands and watersheds provide baseline data against which the effects of small- and large-scale disturbances may be measured. Using previously published data and supplemental new data on gaseous N loss, we construct a N budget for hillslope tabonuco forest (HTF) stands in Puerto Rico. HTF stands are subject to frequent hurricanes and landslides; here, we focus on N fluxes in the late phase of inter-disturbance forest development. N inputs from atmospheric deposition (4-6 kg N/ha/yr) are exceeded by N outputs from groundwater, gaseous N loss, and particulate N loss (6.3–15.7 kg N/ha/yr). Late-successional HTF stands also sequester N in their aggrading biomass (8 kg N/ha/yr), creating a total budget imbalance of 8.3–19.7 kg N/ha/yr. We surmise that this imbalance may be accounted for by unmeasured inputs from above- and belowground N-fixation and/or slow depletion of the large N pool in soil organic matter. Spatial and temporal variability, especially that associated with gaseous exchange and soil organic matter N-mineralization, constrain the reliability of this N budget.(Formerly Tamara J. Eklund)  相似文献   

15.
Fire is a major factor controlling global carbon (C) and nitrogen (N) cycling. While direct C and N losses caused by combustion have been comparably well established, important knowledge gaps remain on postfire N losses. Here, we quantified both direct C and N combustion losses as well as postfire gaseous losses (N2O, NO and N2) and N leaching after a high‐intensity experimental fire in an old shrubland in central Spain. Combustion losses of C and N were 9.4 Mg C/ha and 129 kg N/ha, respectively, representing 66% and 58% of initial aboveground vegetation and litter stocks. Moreover, fire strongly increased soil mineral N concentrations by several magnitudes to a maximum of 44 kg N/ha 2 months after the fire, with N largely originating from dead soil microbes. Postfire soil emissions increased from 5.4 to 10.1 kg N ha?1 year?1 for N2, from 1.1 to 1.9 kg N ha?1 year?1 for NO and from 0.05 to 0.2 kg N ha?1 year?1 for N2O. Maximal leaching losses occurred 2 months after peak soil mineral N concentrations, but remained with 0.1 kg N ha?1 year?1 of minor importance for the postfire N mass balance. 15N stable isotope labelling revealed that 33% of the mineral N produced by fire was incorporated in stable soil N pools, while the remainder was lost. Overall, our work reveals significant postfire N losses dominated by emissions of N2 that need to be considered when assessing fire effects on ecosystem N cycling and mass balance. We propose indirect N gas emissions factors for the first postfire year, equalling to 7.7% (N2‐N), 2.7% (NO‐N) and 5.0% (N2O‐N) of the direct fire combustion losses of the respective N gas species.  相似文献   

16.
Improving nitrogen efficiency: lessons from Malawi and Michigan   总被引:1,自引:0,他引:1  
Two case studies are presented here of nitrogen (N) dynamics in potato/maize systems. Contrasting systems were investigated from (1) the highland tropics of Dedza, Malawi in southern Africa and (2) the northern temperate Great Lakes region of Michigan. Formal surveys were conducted to document grower perceptions and N management strategies. Survey data were linked with N budgets conducted by reviewing on-farm data from representative farms in the targeted agroecosystems and simulation modeling to estimate N losses. Potential N-loss junctures were identified. Interventions that farmers might accept are discussed. The Malawi system uses targeted application of very small amounts of fertilizer (average 18 kg N ha(-1)) to growing plants. This low rate is on the steep part of plant response to N curve and should serve to enhance efficiency; plant growth, however, is generally stunted in Malawi due to degraded soils and weed competition. Very limited crop yields reduce N efficiency from a simulated 60 kg grain per kg N to an actual of approximately 20 kg grain per kg N (at 40 kg N ha(-1) applied). Legume-intensified systems could improve growth potential and restore N use efficiency through amelioration of soil quality and transfer functions and from biological fixation N inputs. In the Michigan system, N efficiency is enhanced currently through multiple, split applications of N fertilizer tailored to plant growth rate and demand. Fertilizer N rates used by growers, however, averaged 32% higher than recommended rates and 40% higher than N removed in crop product. Application of 50 kg N ha(-1) to cover crops in the fall may contribute to the apparent high potential for N leaching losses. Careful consideration of N credits from legumes and residual soil N would improve N efficiency. Overall, N budgets indicated 0 to 20 kg N ha(-1) loss potential from the Malawi systems and tenfold higher loss potential from current practice in Michigan maize/potato rotations. Best management practices, with or without integration of legumes, could potentially reduce N losses in Michigan to a more acceptable level of about 40 kg N ha(-1).  相似文献   

17.
Leaching losses of nitrate from forests can have potentially serious consequences for soils and receiving waters. In this study, based on extensive sampling of forested watersheds in the Catskill Mountains of New York State, we examine the relationships among stream chemistry, the properties of the forest floor, and the tree species composition of watersheds. We report the first evidence from North America that nitrate export from forested watersheds is strongly influenced by the carbon:nitrogen (C:N) ratio of the watershed soils. We also show that variation in soil C:N ratio is associated with variation in tree species composition. This implies that N retention and release in forested watersheds is regulated at least in part by tree species composition and that changes in species composition caused by introduced pests, climate change, or forest management could affect the capacity of a forest ecosystem to retain atmospherically deposited N. Received 4 March 2002; Accepted 4 June 2002.  相似文献   

18.
We analyzed long-term organic and inorganic nitrogen inputs and outputs in precipitation and streamwater in six watersheds at the H.J. Andrews Experimental Forest in the central Cascade Mountains of Oregon. Total bulk N deposition, averaging 1.6 to 2.0 kg N ha–1 yr–1, is low compared to other sites in the United States and little influenced by anthropogenic N sources. Streamwater N export is also low, averaging <1 kg ha–1 yr–1. DON is the predominant form of N exported from all watersheds, followed by PON, NH4-N, and NO3-N. Total annual stream discharge was a positive predictor of annual DON output in all six watersheds, suggesting that DON export is related to regional precipitation. In contrast, annual discharge was a positive predictor of annual NO3-N output in one watershed, annual NH4-N output in three watersheds, and annual PON output in three watersheds. Of the four forms of N, only DON had consistent seasonal concentration patterns in all watersheds. Peak streamwater DON concentrations occurred in November-December after the onset of fall rains but before the peak in the hydrograph, probably due to flushing of products of decomposition that had built up during the dry summer. Multiple biotic controls on the more labile nitrate and ammonium concentrations in streams may obscure temporal DIN flux patterns from the terrestrial environment. Results from this study underscore the value of using several watersheds from a single climatic zone to make inferences about controls on stream N chemistry; analysis of a single watershed may preclude identification of geographically extensive mechanisms controlling N dynamics.  相似文献   

19.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   

20.
Nitrate leaching to streams is a sensitive indicator of the biogeochemical status of forest ecosystems. Two primary theories predicting long-term (decadal) changes in nitrate loss rates (N saturation theory and the nutrient retention hypothesis) both predict increasing dissolved inorganic nitrogen (DIN) losses for watershed 6 (W6), the biogeochemical reference watershed at the Hubbard Brook Experimental Forest (HBEF). Measured values, however, have declined substantially since measurements began in the mid-1960s. Are these theories wrong, or are there other important controls on DIN losses at the annual to decadal time scale that have obscured the tendency toward higher losses over time? We tested the individual and combined effects of several forms of disturbance on DIN loss rates from northern hardwood forests by comparing predictions from a relatively simple model of forest carbon, nitrogen, and water dynamics (PnET-CN) with the long-term record of annual DIN loss from W6 at HBEF. Perturbations tested include interannual climate variation, changes in atmospheric chemistry (CO2, O3, N deposition), and physical and biotic disturbances (two harvests, a hurricane salvage, and a defoliation event). No single disturbance caused changes in DIN losses to mimic measured values. Only when run with all of the disturbances combined did the model-predicted pattern of interannual change in DIN loss approach the measured record. Single-disturbance simulations allow an estimation of the role of each in the total pattern of DIN loss. We conclude that DIN losses from W6 were elevated in the 1960s by a combination of recovery from extreme drought and a significant defoliation event. N deposition alone, in the absence of other disturbances, would have increased DIN losses by 0.35 g N m?2y?1. These findings indicate that predictions of DIN losses must take into account the full spectrum of disturbance events and changes in environmental conditions impacting the systems examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号