首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun F  Wu S  Liu J  Li B  Chen Y  Wu W 《Bioresource technology》2012,103(1):109-115
Effects of different chemical oxygen demand (COD) to nitrate concentration ratios in the injected leachate on the denitrification capacity of landfilled municipal solid waste were evaluated. Results showed that the 6-year-old refuse possessed high denitrification capacity. The nitrate reduction rate increased with the increasing COD concentration in the injected leachate. When the initial COD concentration increased to 6500 mg l(-1), nitrate reduction rate could reach up to 6.85 mg NO3--N l(-1) h(-1). At the initial biodegradable COD/NO3--N ratio lower than the stoichiometric ratio of heterotrophic denitrification, autotrophic bacteria was the dominant microbial communities for denitrification. With the increase of COD/NO3--N ratio, the primary functional denitrifier would shift from autotrophic Thiobacillus denitrificans to heterotrophic Azoarcus tolulyticus. These results suggested that the initial biodegradable COD/NO3--N ratio in the injected leachate should be adjusted to higher than 6.0 for rapid in situ denitrification of 500 mg NO3--Nl(-1).  相似文献   

2.
We investigated the interaction of rhizospheric nitric oxide (NO) concentration (i.e. low, ambient or high) and soil nitrogen (N) availability (i.e. low or high) with organic and inorganic N uptake by fine roots of Pinus sylvestris L. seedlings by 15N feeding experiments under controlled conditions. N metabolites in fine roots were analysed to link N uptake to N nutrition. NO affected N uptake depending on N source and soil N availability. The suppression of nitrate uptake in the presence of ammonium and glutamine was overruled by high NO. The effects of NO on N uptake with increasing N availability showed different patterns: (1) increasing N uptake regardless of NO concentration (i.e. ammonium); (2) increasing N uptake only with high NO concentration (i.e. nitrate and arginine); and (3) decreasing N uptake (i.e. glutamine). At low N availability and high NO nitrate accumulated in the roots indicating insufficient substrates for nitrate reduction or its storage in root vacuoles. Individual amino acid concentrations were negatively affected with increasing NO (i.e. asparagine and glutamine with low N availability, serine and proline with high N availability). In conclusion, this study provides first evidence that NO affects N uptake and metabolism in a conifer.  相似文献   

3.
鼎湖山马尾松人工林土壤硝态氮和铵态氨动态研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 本文用离子交换树脂袋法(lon exchange resin bag method),测定了鼎湖山马尾松人工林土壤硝态氮和铵态氮动态情况。结果表明,鼎湖山马尾松林土壤硝态氮和铵态氮均具有明显的季节性变化,以春季最高和夏季最低。硝态氮在0~10cm和10~20cm两土层的年平均值分别为1.722和1.429μg.d-1·g-1干树脂,铵态氮在0~10cm和10~20cm的年平均值则分别为19.137和14.696μg·d-1·g-1干树脂。硝态氮和铵态氮在试验的大部分季节表现出显著的直线相关关系(P<0.05),表明了铵态氮供应是调节硝化速率的一个重要因子。  相似文献   

4.
Summary Nitrate reductase activity (NRA), nitrate content and biomass components of leaflets, leaf stalks, old stem, current-year stem and roots of ash trees (Fraxinus excelsior L.) growing in their natural habitats were investigated. In addition, NRA, total nitrogen and nitrate concentration were analyzed in the leaves and roots of ash trees from four different field sites. The highest NRA per gram biomass and also per total compartment biomass was found in the leaflets, even though root biomass was much higher than total leaflet biomass. The highest nitrate concentrations were found in the leaf stalks. Correlations between nitrate availability in the soil and NRA in leaves were not significant due to high variability of the actual soil nitrate concentrations. The seasonal variation in foliar NRA, nitrate concentration and total nitrogen concentration is much smaller in F. excelsior than reported for herbaceous species and is mainly caused by changes in the actual soil nitrate availability and by senescence of the leaves.  相似文献   

5.
13NO3 was used to determine the intracellular compartmentation of NO3 in barley roots (Hordeum vulgare cv. Klondike), followed by a thermodynamic analysis of nitrate transport.Plants were grown in one-tenth Johnson's medium with 1 mol m3 NO3 (NO3-grown plants) or 1 mol m3 NH4NO3 (NH4NO3-grown plants).The cytoplasmic concentrations of NO3 in roots were only approx. 3-6 mol m3 (half-time for exchange approx. 21 s) in both NO3 and NH4NO3 plants. These pool sizes are consistent with published nitrate microelectrode data, but not with previous compartmental analyses.The electrochemical potential gradient for nitrate across the plasmalemma was +26 +/-1 kJ mol1 in both NO3- and NH4NO3-grown plants, indicating active uptake of nitrate. At an external pH of 6, the plasmalemma electrochemical potential for protons would be approx. -29 +/- 4 kJ mol1. If the cytoplasmic pH was 7.3 +/- 0.2, then 2H+/1NO3 cotransport, or a primary ATP-driven pump (2NO3/1ATP), are both thermodynamically possible. NO3 is also actively transported across the tonoplast (approx. +6 to 7 kJ mol1).  相似文献   

6.
Gebauer  G.  Hahn  G.  Rodenkirchen  H.  Zuleger  M. 《Plant and Soil》1998,199(1):59-70
Nitrate reductase activities (NRA) and nitrate concentration per unit biomass in Picea abies (L.) Karst. roots from four different soil horizons and in leaves and roots of the frequent field-layer species Oxalis acetosella L. were measured on six different irrigation and liming treatments within the Höglwald project, S-Bavaria, Germany. Liming increased and acid irrigation reduced soil nitrate availability when compared to control plots. Nitrate assimilation capacities of the respective plant compartments per unit of soil volume or ground area were calculated from the NRA per unit of biomass and from the biomass distribution on the various treatments.Mean NRA per unit of biomass in Picea abies roots ranged between 0.23 and 0.09 mol NO 2 - g-1 d.w. h-1 without significant effects of soil horizon or treatment. Limed and non-limed treatments showed for Picea different root distributions within the soil profile, but root biomass per unit of ground area (295 to 220 g d.w. m-2) was not affected by the various treatments. Thus, nitrate assimilation capacity of Picea roots per unit of ground area ranged between 19.5 and 11.4 mol NO 2 - m-2 h-1 without major treatment effects.In laminae of Oxalis acetosella mean NRA per unit of biomass ranged between 2.91 and 0.27 mol NO 2 - g-1 d.w. h-1 and, in contrast to Picea abies, treatment effects were found with NRA on limed plots increased and on acid irrigated plots reduced when compared to control plots. Mean leaf biomass of Oxalis per unit of ground area ranged between 9.57 and 0.66 g d.w. m-2 and responded in a similar manner to the various treatments. Thus, for the Oxalis leaf NRA per unit of ground area (27.85 to 0.18 mol NO2 m-2 h-1) a cumulative response to the variations in nitrate availability was found.The different responses of Picea abies and Oxalis acetosella to changes in soil nitrate availability are discussed with respect to their suitability to prevent soil nitrate leaching.  相似文献   

7.
硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆   总被引:16,自引:0,他引:16  
硝酸盐在植物体内的积累过多已成为影响蔬菜品质并影响人类健康的重要因素。硝酸还原酶(NR)是硝酸盐代谢中的关键酶,提高其活性有利于硝酸盐的降解。为了解植物不同组织中NR的活性,用活体测定法检测了经50mmol/L的KNO3诱导不同时间后的油菜、豌豆和番茄幼苗根茎叶中NR活性,同时为了明确外源诱导剂浓度与植物体内NR活性的关系,检测了经不同浓度KNO3诱导2h后的矮脚黄、抗热605、小白菜和番茄叶片中的NRA。结果表明,不同植物组织NR活性有很大差异,叶中NR活性较高,根其次,茎最低;不同植物的NR活性随诱导时间呈不同的变化趋势,相同植物不同组织的NR活性变化趋势相似;不同植物叶片NRA为最高时KNO3浓度不同。用30mmol/L的KNO3诱导番茄苗2h后,从番茄根和叶中提取总RNA,用RT-PCR方法获得NR cDNA,全长2736bp,编码911个氨基酸。为进一步利用该基因提高植物对硝酸盐的降解能力打下基础。  相似文献   

8.
Intertidal macroalgae Fucus and Laminaria experience seasonally fluctuating inorganic N supply. This study examined the effects of long‐term N deprivation, recovery following N resupply, and effects of elevated ammonium and nitrate exposure on N acquisition in intertidal algae using manipulations of N supply in tank culture. Over 15 weeks of N deprivation, internal N and nitrate reductase activity (NRA) declined, but maximum quantum yield of PSII was unaffected in Fucus serratus and Fucus vesiculosus. Low NRA was maintained despite no external nitrate availability and depletion of internal pools, suggesting a constitutive NRA, insensitive to N supply. Nitrate resupplied to N‐starved thalli was rapidly taken up and internal nitrate pools and NRA increased. Exposure to elevated (50 μM) nitrate over 4 days stimulated nitrate uptake and NRA in Laminaria digitata and F. serratus. Exposure to elevated ammonium suppressed NRA in L. digitata but not in F. serratus. This novel insensitivity of NRA to ammonium in Fucus contrasts with regulation of NRA in other algae and higher plants. Ammonium suppression of NRA in L. digitata was not via inhibition of nitrate uptake and was independent of nitrate availability. L. digitata showed a higher capacity for internal nitrate storage when exposed to elevated ambient nitrate, but NRA was lower than in Fucus. All species maintained nitrate assimilation capacity in excess of nitrate uptake capacity. N uptake and storage strategies of these intertidal macroalgae are adaptive to life in fluctuating N supply, and distinct regulation of N metabolism in Fucus vs Laminaria may relate to position in the intertidal zone.  相似文献   

9.
Nitrate reductase activity in chicory roots following excision   总被引:2,自引:1,他引:1  
In young chicory plantlets (Cichorium intybus L. Witloof cv.Flash), nitrate assimilation takes place mainly in the roots.Nitrate reductase activity (NRA) was measured in roots deprivedof shoot control by excision and transferred into a sucrose-containingmedium. Such a treatment resulted in a drop of about 60% ofNRA within 3 h. The level of NR protein decreased after 12 hand the level of NR-mRNA after several days. This adaptationof nitrate assimilation to excision was affected by a phosphorylation-dephosphorylationmechanism as shown by increased sensitivity to magnesium ofin vitro NRA. Okadaic acid, a serinethreonine protein phosphatasesinhibitor, enhanced the decrease of NRA. Conversely, staurosporine,a serine-threonine protein kinases inhibitor, antagonized theinhibition of NRA. This suggests that excision caused a rapidinactivation of NRA in roots of chicory by modifying the phosphorylationbalance towards a phosphorylated NR form which could enter aninactive complex. Key words: Chicory, nitrate reductase, staurosporine  相似文献   

10.
The hypothesis was tested that slow-growing grass species perform a greater proportion of total plant NO3- reduction in their roots than do fast-growing grasses. Eight grass species were selected that differed in maximum relative growth rate (RGR) and net NO3- uptake rate (NNUR). Plants were grown with free access to nutrients in hydroponics under controlled-environment conditions. The site of in vivo NO3- reduction was assessed by combining in vivo NO3- reductase activity (NRA) assays with biomass allocation data, and by analysing the NO3- to amino acid ratio of xylem sap. In vivo NRA of roots and shoots increased significantly with increasing NNUR and RGR. The proportion of total plant NO3- reduction that occurs in roots was found to be independent of RGR and NNUR, with the shoot being the predominant site of NO3- reduction in all species. The theoretical maximum proportion of whole plant nitrogen assimilation that could take place in the roots was calculated using information on root respiration rates, RGR, NNUR, and specific respiratory costs associated with growth, maintenance and ion uptake. The calculated maximum proportion that the roots can contribute to total plant NO3- reduction was 0.37 and 0.23 for the fast-growing Dactylis glomerata L. and the slow-growing Festuca ovina L., respectively. These results indicate that slow-growing grass species perform a similar proportion of total plant NO3- reduction in their roots to that exhibited by fast-growing grasses. Shoots appear to be the predominant site of whole plant NO3- reduction in both fast- and slow-growing grasses when plants are grown with free access to nutrients.  相似文献   

11.
Abstract The partitioning of nitrate assimilation between root and shoot of higher plant species is indicated by the relative proportions of total plant nitrate reductase activity (NRA) in the two plant parts and the relative concentrations of nitrate and reduced N in the xylem sap. These have been collated here from the literature and temperate and tropical species compared. Both the distribution of NRA and xylem sap nitrate: reduced N indicate that the following four generalizations can be made.
  • 1 Temperate, perennial species growing in low external nitrate concentrations (about 1 mol m?3) carry out most of their nitrate assimilation in the root. As external nitrate concentration increases (in the range found in agricultural soils, 1–20 mol m?3), shoot nitrate assimilation becomes increasingly important.
  • 2 Temperate, annual legume species growing in low external nitrate concentrations carry out most of their nitrate assimilation in the root. Shoot nitrate assimilation increases in importance as external nitrate concentration is increased.
  • 3 Temperate, annual non-legume species vary greatly in their partitioning of nitrate assimilation between root and shoot when growing in low external nitrate concentrations. Regardless of the proportion carried out in the root at low external nitrate concentrations, nitrate assimilation in the shoot becomes increasingly important as external nitrate concentration is increased.
  • 4 Tropical and subtropical species, annual and perennial, carry out a substantial proportion of their nitrate assimilation in the shoot when growing in low external nitrate concentrations. The partitioning of nitrate assimilation between root and shoot remains constant as external nitrate concentration increases.
It is proposed that a greater proportion of nitrate assimilation occurs in the shoot when an increase in the rate of nitrate uptake does not induce an increase in NR level in the root. Thus, a greater proportion of the nitrate taken up remains unassimilated and is passed into the xylem. A constant partitioning of nitrate assimilation between root and shoot is achieved by balancing NR levels in the root with rates of nitrate uptake. The advantages and disadvantages of assimilating nitrate in either the root or shoot are discussed in relation to temperate and tropical habitats.  相似文献   

12.
Nitrate reductase activity (NRA) in different compartments (leaves, inflorescence stalks, flowers and tuberous roots) of Asphodelus aestivus Brot. (Liliaceae) and actual mineral nitrogen (NO3-N and NH4+-N) in soil surrounding the roots were investigated over one year. Although the highest NRA was found in the leaves, the other plant compartments, such as flowers and tuberous roots, also have nitrate assimilation capacity. High nitrate assimilation capacity under suitable conditions is considered to be a good strategy for development and dominance of this species in Mediterranean environments. There was a seasonal variation in nitrate assimilation in leaves and actual NO3-N content of soils. Depending on actual nitrate content of soils, nitrate assimilation increased in winter.  相似文献   

13.
硝酸盐供应对玉米侧根生长的影响   总被引:21,自引:0,他引:21  
以两个玉米(Zea mays L.)自交系478和Wu312为研究材料,采用琼脂培养方法,研究不同浓度NO-3对侧根生长的影响.结果表明,在外部浓度0.01~1.0mmol/L范围内,NO-3供应能显著增加侧根的长度及根生物量.但当NO-3供应超过1.0 mmo1/L后,侧根长度开始下降.当NO-3供应分别在超过5.0(Wu312)与10(478)mmol/L后,侧根密度显著下降.在10 mmol/LNO-3下,Wu312的侧根生长几乎完全被抑制.而478在20 mmol/L时,侧根密度仍可达到其最大值的30%(主根)~50%(胚根).植株地上部全氮及硝酸盐含量随NO-3供应的增加而升高,二者与侧根长度、侧根密度及冠根比的数学函数关系相同.  相似文献   

14.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

15.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

16.
17.
The effect of pH and Ca2+ on net NO3- uptake, influx, and efflux by intact roots of barley (Hordeum vulgare L.) seedlings was studied. Seedlings were induced with NO3- or NO2-. Net NO3- uptake and efflux, respectively, were determined by following its depletion from, and accumulation in, the external solution. Since roots of both uninduced and NO2(-)-induced seedlings contain little internal NO3- initial net uptake rates are equivalent to influx (M. Aslam, R.L. Travis, R.C. Huffaker [1994] Plant Physiol 106: 1293-1301). NO3-, uptake (influx) by these roots was little affected at acidic pH. In contrast, in NO3(-)-induced roots, which accumulate NO3-, net uptake rates decreased in response to acidic pH. Under these conditions, NO3- efflux was stimulated and was a function of root NO3- concentration. Conversely, at basic pH, NO3- uptake by NO3- and NO2(-)-induced and uninduced roots decreased, apparently because of the inhibition of influx. Calcium had little effect on NO3- uptake (influx) by NO2(-)-induced roots at either pH 3 or 6. However, in NO3(-)-induced roots, lack of Ca2+ at pH 3 significantly decreased net NO3- uptake and stimulated efflux. The results indicate that at acidic pH the decrease in net NO3- uptake is due to the stimulation of efflux, whereas at basic pH, it is due to the inhibition of influx.  相似文献   

18.
随营养液中No_3~-浓度升高,叶片内No_3~-总量、代谢库大小(NIPS)及硝酸还原酶(NR)活性均升高,其中MPS与NK活性呈同步变化;No_3~-浓度达2.0mmol/L时,两者趋于稳值;若再增加NO_3~-浓度,则被吸收的NO_3~-积累于液泡中,而代谢库中NO_3~-含量(MPS)与NO_3~-总量之比有一定程度降低。低氮(NO_3~-浓度为1.0 mmol/L)情况下,反应液中无NO_3~-时,叶片内NR活性品种间有差异,但在50 mmol/L NO_3~-反应液中则品种间无差异;NK活性高的品种鲁麦8号及品种321叶内有大的NO_3~-代谢库,反应液中NO_3~-对NR活性刺激程度低,代谢库NO_3~-含量与叶NO_3~-总量之比高,而叶组织长时间反应过程中其NR活性衰减速率低。  相似文献   

19.
The impact of mineral N supply, N-free or NO3(-) with or without NH4+, on the subsequent uptake of NO3(-) by maritime pine seedlings associated with the ectomycorrhizal fungus Rhizopogon roseolus was studied using ion-selective microelectrodes. NO3(-) net fluxes into N-starved non-mycorrhizal short roots (NMSRs) were low and measurable only over the NO3(-) concentration range of 0-70 microM. The simple kinetics observed in those roots may reflect the dominant operation of a high-affinity NO3(-) transport system (HATS) which is constitutive. NO3(-) pretreatment increased the NO3(-) net fluxes and led to a complex kinetics that may reflect the operation of other HATS. A simple kinetics was observed in plants pre-incubated at high NH4+ concentration. In contrast, NO3(-) uptake kinetics presented only one saturation phase in the fungus, whether associated with the plant or not. NO3(-) uptake was greater after a pretreatment in N-free or NO3 (-) solution, but NH4+ pretreatment led to a threefold reduction in NO3 (-) uptake. These results suggest that the regulation of NO3(-) transport systems varies between the host and the fungal partner. This variation is likely to contribute to the positive effect of mycorrhizal association on N uptake in plants when the N supply is low and fluctuating.  相似文献   

20.
硝态氮(NO3^—)对水稻侧根生长及其氮吸收的影响   总被引:6,自引:0,他引:6  
侧根是植物吸收利用土壤养分的重要器官 ,其生长发育受内部遗传因子和外部环境矿质养分的影响。通过琼脂分层培养发现 :局部供应NO-3 可以诱导水稻 (OryzasativaL .)主根或不定根上侧根的生长。为研究旱种条件下NO-3 对水稻侧根发育及其N吸收的影响 ,设置了 3个蛭石培养实验 :分根处理、全株缺N、全株供N处理。分根处理 (一半根系供应 3mmol/LKNO3,另一半根系供应 3mmol/LKCl)结果表明 :局部供应NO-3 能够促进水稻侧根生长。而在全株处理下 ,N饥饿诱导了侧根的伸长。水稻根系对NO-3 的这两种反应都存在着显著的基因型差异。同时对地上部N浓度、可溶性总糖含量及N含量分析表明 ,这些生理指标在分根处理与全株加N处理中的差异均不显著 ,表明分根处理也能基本满足植株正常生长对N的需求。在分根处理中 ,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关 ,这表明在养分不均一的介质中 ,侧根长度对水稻N素吸收具有十分重要的作用。而在N素充足的条件下 ,两者之间的相关性并不显著 ,这暗示在养分充足的环境下 ,侧根长度可能并不是决定根系吸收N素的主要因素  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号