首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six lactating cows, 6 dry cows and 6 wether sheep were fed ad libitum on diets of maize silage, maize silage plus lucerne, or maize silage plus lucerne plus wheat. Faeces and urine collections allowed for the determination of digestibility of dry matter, organic matter and nitrogen, and balances of nitrogen and water.

Voluntary feed intakes were highest and digestibility values were lowest in lactating cows. The addition of lucerne reduced organic matter digestibility in dry cows, but not in lactating cows or sheep. The addition of wheat decreased intake in dry cows and sheep, but not in lactating cows. Production of milk, protein, solids-not-fat and total solids increased with dietary quality, but there was a depression in milk fat content as a result of wheat supplementation.

The ranking of the 3 diets on the basis of feed intake differed with each class of livestock, but lactating cows and sheep gave the same ranking on the basis of organic matter digestibility.  相似文献   


2.
The objective of this experiment was to quantify the effects of unroasted or roasted ground-shelled corn (GSC), when fed with alfalfa ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial CP synthesis in lactating dairy cows. The roasted corn was heat-treated in a propane-fired roasting system. Alfalfa was harvested as second cutting from fields with regrowth of the same maturity. A portion of each field was allotted to each silo. The diets with 3 × 2 factorial arrangement of treatments were fed to six multiparous rumen-cannulated Holstein cows in a cyclic change-over design with five 21-day periods. Experimental diets were comparable and averaged (on dry matter (DM) basis): 410 g/kg alfalfa silage (AS), 150 g/kg corn silage, 350 g/kg GSC, 50 g/kg soybean meal, 40 g/kg roasted soybeans, 177 g/kg CP, 264 g/kg NDF and 250 g/kg starch. Nutrient flow was quantified by the omasal sampling technique with use of three markers (Co, Yb and indigestible NDF). Continuous infusion of 10% atom excess (15NH4)2SO4 was used to label microbial CP. None of the interactions between storage structure of dietary AS and corn type were significant. DM intake was not different among dietary treatments, averaging 24.5 kg/day across diets. Means of ADF digested in the rumen for cows fed diets with AS from bag, bunker and O2-limiting tower silo were 2.1, 1.7 and 2.1 kg/day, respectively, and was lower in cows fed AS from the bunker silo. This response may partly be a reflection of the higher intake of ADF by cows fed AS ensiled in the O2-limiting tower silo compared with the bunker. There was a slightly greater supply of fermentable substrates for cows fed diets with roasted compared with unroasted GSC. The small increases in yield of milk protein and lactose observed in the previous production trial in cows fed diets containing roasted corn may have occurred because of greater supply of fermentable substrates.  相似文献   

3.
The potassium sensitive magnesium absorption through the rumen wall may be influenced by additional dietary properties, such as diet type, forage type or forage to concentrate ratio. These properties are likely associated to rumen passage kinetics modified by dietary fibre content. The study aimed to assess the effects of rumen passage kinetics on apparent Mg absorption and retention in lactating dairy cows fed modified levels of fibre. Six lactating Red-Holstein and Holstein cows, including four fitted with ruminal cannulas were randomly assigned to a 3 × 3 cross-over design. The experimental diets consisted of early harvested low NDF (341 g NDF/kg DM) and late harvested high NDF (572 g NDF/kg DM) grass silage (80% DM) and of concentrates (20% of DM). As the low-fibre diet was excessive in protein, a third high-fibre diet was formulated to be balanced in digestible protein with the low-fibre diet to avoid any eventual confounding effects of NDF and protein excess. All diets were formulated to contain iso-Ca, -P, -Mg, -K and -Na. Passage kinetics of solid and liquid phase of rumen digesta were evaluated using ruminal marker disappearance profiles. Cows fed the low-fibre diet had compared to the other diets, an up to 40% lower solid and 26% lower liquid phase volume of rumen digesta and a 10% numerically higher fractional rumen liquid passage rate. Rumen pH lost 0.6 units and Mg concentration in the rumen liquid phase tripled when cows were fed the low-fibre diet. Faecal Mg excretion was up to 14% higher in cows fed the low-fibre diet and Mg absorbability was 12% compared to up to 19% in other diets. Urinary Mg excretion in cows fed the low-fibre diet was half of the ones in the other treatments, but Mg retention was not affected. Dietary protein excess neither affected rumen passage kinetics nor Mg absorption and retention. Absorption of Mg was correlated with rumen liquid volume which both decreased with decreasing daily NDF intake (NDFi, 11.8 ± 2.4 l/kg NDFi). Consequently, daily Mg absorption decreased by 1.32 ± 0.28 g/kg decreasing NDFi. To conclude, in addition to the known antagonistic effect of dietary K, the present data indicate that Mg absorption was dependent from NDFi which modified rumen liquid volume, but was independent of dietary protein excess likely associated to low NDF herbages.  相似文献   

4.
Wet corn gluten feed (WCGF) is a high moisture feed containing rapidly digestible, non-forage fiber and protein. The objective of this study was to investigate the effect of substituting WCGF and corn stover for alfalfa hay in total mixed ration (TMR) silage on lactation performance and nitrogen balance in dairy cows. Nine multiparous Holstein dairy cows (BW = 532 ± 28.9 kg and day in milk = 136 ± 5.6 d; mean ± SD) were used in a replicated 3 × 3 Latin square design with 21-d periods (14 d of diet adaption and 7 d of sample collection). Groups were balanced for parity, day in milk, and milk production and consumed one of three treatment diets during each period. The treatment diets were fed as TMR and contained similar concentrate mixtures and corn silage but different proportions of roughage and WCGF. The three treatments were: (1) 0% WCGF, 0% corn stover, and 22.1% alfalfa hay (0% WCGF); (2) 6.9% WCGF, 3.4% corn stover, and 11.8% alfalfa hay (7% WCGF); and (3) 13.3% WCGF, 4.9% corn stover, and 3.9% alfalfa hay (13.3% WCGF). Compared to the 0% WCGF diet, the cows fed the 7% and 13.3% WCGF diets had a higher milk yield and concentration of milk fat, protein, lactose, and total solids. Effective degradability of DM was higher in the cows fed the 7% and 13.3% WCGF diets than it was with the 0% WCGF diet. Cows fed the 13.3% WCGF had a higher CP effective degradability and a lower rumen undegraded protein than cows fed the 0% WCGF diet. The concentration of ruminal volatile fatty acids and ammonia-N was higher in cows fed the 7% and 13.3% WCGF diets than cows fed the 0% WCGF diet. The fecal N was lower in cows fed the 7% and 13.3% WCGF diets than it was in cows fed the 0% WCGF diet. Milk N secretion and milk N as a percent of N intake were higher in cows fed the 13.3% WCGF diet than cows fed the 0% and 7% WCGF diets. In conclusion, it appears that feeding a TMR silage containing WCGF and corn stover in combination, replacing a portion of alfalfa hay, may improve lactation performance and nitrogen utilization for lactating dairy cows.  相似文献   

5.
Ammonia (NH(3)) volatilization decreases the N-nutrient value of livestock manure slurries and can lead to soil acidification and eutrophication problems. In this study the effect of three manure additives (Euro Mest-mix (Mx), Effective Micro-organisms (EM), and Agri-mest (Am)) on NH(3) volatilization at three temperatures (4, 20, and 35 degrees C) was investigated. The manufacturers claim that Mx contains absorbing clay minerals and that applying Am and EM to slurry will reduce nitrogen losses, most likely by enhancing the biodegradation of manure slurry. Furthermore, the effect of mixing slurry on NH(3) volatilization has been investigated. Ammonia volatilization increased with increasing temperature and mixing of the slurries. However, at 35 degrees C mixing of manure reduced NH(3) emissions compared to non-mixing, which is related to a reduced crust resistance to gaseous transport at higher temperatures for non-mixing. Moreover, mixing introduces oxygen into the anaerobic slurry environment which will slow down microbial activity. The use of additives did not change manure characteristics (pH, dry matter, N(total), N(mineral), C/N, and C/N(organic)) and did not result in a significant (p<0.05) decrease in NH(3) emissions, except that at 4 degrees C and no mixing a significant decrease of 34% in NH(3) volatilization was observed, when Am and EM together, were applied to slurry.  相似文献   

6.
Two experiments were conducted with 30 dairy cows each, to study the preference for fresh (Experiment 1) and ensiled (Experiment 2) ryegrass, white and red clover. Both experiments consisted of three choice diets with white or red clover or both, offered with ryegrass, and two diets with ryegrass mixed with white or red clover (40% clover). Cows consumed diets with 37.7% fresh white and 45.9% red clover, and no preference was observed when the cows were offered all three forages. By contrast, cows preferred white and red clover silage (73.0 and 69.2%, respectively) over ryegrass silage (of lower nutritive quality). When offered three forages, cows preferred white (59.8%) over red clover (17.5%) and ryegrass (22.7%). Choice diets resulted in diets similar (fresh forages) or higher in nutrient content and digestibility (silages). Treatments did not affect feed intake and performance. Choices compared to mixed diets with red clover silage were preferable regarding the fatty acid composition of the milk fat. Obviously, only large differences in nutrient and energy concentration facilitate preferences for clovers over ryegrass, which could, depending on clover type, be beneficial in terms of the milk's fatty acid composition.  相似文献   

7.
This study investigated the effect on follicular and embryo development of increasing quickly degradable nitrogen (QDN) intake in lactating Holstein dairy cows. Forty mature post-partum cows were fed one of two diets for a minimum of 10 weeks, starting 10 days before first insemination. The Control diet was a high production dairy ration. The High QDN diet comprised the Control ration plus 250 g urea/head/day. Both diets were formulated to ensure that the energy requirements of the cows were satisfied. The High QDN treatment resulted in a significant increase in milk urea, plasma urea and plasma ammonia concentrations. The highest plasma urea (8.2 mmol/l) and ammonia concentrations (120 micromol/l) were recorded within 7 days of the urea supplement being added to the diet. There was no effect of diet on plasma progesterone or glucose concentration. There was also no significant effect of treatment on follicular development or embryo growth. The results from this study suggest that the lactating cow can adapt to increased intakes of QDN if the increase starts at least 10 days before insemination.  相似文献   

8.
Ruminant husbandry constitutes the most important source of anthropogenic methane (CH4). In addition to enteric (animal-derived) CH4, excreta are another source of CH4, especially when stored anaerobically. Increasing the proportion of dietary concentrate is often considered as the primary CH4 mitigation option. However, it is unclear whether this is still valid when diets to be compared are energy-balanced. In addition, non-structural carbohydrates and side effects on nitrogen (N) emissions may be important. In this experiment, diet types representing either forage-only or mixed diets were examined for their effects on CH4 and N emissions from animals and their slurries in 18 lactating cows. Apart from a hay-only diet, treatments included two mixed diets consisting of maize stover, pelleted whole maize plants and gluten or barley straw and grain and soy bean meal. The diets were balanced in crude protein and net energy for lactation. After adaptation, data and samples were collected for 8 days including a 2-day CH4 measurement in respiratory chambers. Faeces and urine, combined proportionately according to excretion, were used to determine slurry-derived CH4 and N emissions. Slurry was stored for 15 weeks at either 14°C or 27°C, and temperatures were classified as 'cool' and 'warm', respectively. The low-starch hay-only diet had high organic matter and fibre digestibility and proved to be equally effective on the cows' performance as mixed diets. The enteric CH4 formation remained unaffected by the diet except when related to digested fibre. In this case emission was lowest with the hay-only diet (61 v. 88 to 101 g CH4/kg digested NDF). Feeding the hay diet resulted in the highest slurry-CH4 production after 7 weeks of storage at 14°C and 27°C, and after 15 weeks at 14°C. CH4 emissions were, in general, about 10-fold higher at 27°C compared with 14°C but only after 15 weeks of storage. Urinary N losses were highest with the barley diet and lowest with the maize diet. There was a trend towards similar differences in N losses from the slurry of these cows (significant at 14°C). However, contrary to CH4, slurry-N emissions seemed to be temperature-independent. In conclusion, energetically balanced diets proved to be widely equivalent in their emission potential when combining animal and their slurry, this even at a clearly differing forage : concentrate ratio. The variation in CH4 emission from slurry stored shortly or at cold temperature for 15 weeks was of low importance as such conditions did not support methanogenesis in slurry anyway.  相似文献   

9.
Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich to replace barley and SHW as a major energy supplement for milk production. The environmental impact, expressed as methane emissions, was not different when comparing MCS, SHW and barley.  相似文献   

10.
Whole-plant faba bean silage has a high content in indigestible fiber. Improvement of fiber digestibility of faba bean silage would benefit animal production. However, there is no study on pretreating fibrolytic enzyme in whole-plant faba bean silage-based diet for dairy cows on animal performance. The objectives of this study were to evaluate the effects of pretreating whole-plant faba bean silage-baseddiet with fibrolytic enzyme (a mixture of xylanase and cellulase; AB Vista, UK) derived from Trichoderma reesei (FETR) on lactational performance, digestibility, ruminal fermentation characteristics, and feeding behavior of dairy cows. The animal trial was conducted using eight lactating Holstein cows (BW = 710 ± 44 kg and Days in Milk (DIM) = 121 ± 17 days) with four levels of FETR (0, 0.5, 0.75, and 1.0 mL of FETR/kg DM of silage) in a replicated Latin square design. These enzyme treatments were selected based on the previous in situ and in vitro findings that showed positive responses to the whole-plant faba bean silage. The enzyme treatments were directly applied on the silage prior to mixing process. The total mixed rations contained 31% of faba bean silage, 14% of grass hay, 3.5% of straw, 30% of barley and corn grain and 21.5% of concentrate. There was no significant difference of applying FETR on nutrient intake (P > 0.05) except for CP intake, which was reduced in FETR group compared to control (P < 0.01, 4.4 vs 4.54 kg/d). There was a linear effect found in NDF digestibility when treated with FETR, where maximum improvement was achieved with 0.5 mL of FETR application. The milk fat yield, percentage of milk fat and fat-corrected milk were linearly affected by the increasing level of enzyme. The cows fed a diet supplemented with enzymes tended to have a lower milk fat. Feed efficiency linearly responded to incremental levels of FETR. There was no enzyme effect on feeding behavior and nitrogen balance and utilization. Results from this study indicated that supplementing fibrolytic enzyme on whole-plant faba bean silage diets for dairy cows improved lactational performance, intake and digestibility with 0.5 mL of FETR application. However, adding higher enzyme level resulted in negative effects on animal performance.  相似文献   

11.
There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered.  相似文献   

12.
High protein diets, which lead to excess production of nonprotein nitrogen such as ammonia and urea, have been associated with reduced fertility in dairy cows. In this study we test the hypothesis that diets containing high levels of quickly degradable urea nitrogen (QDN) compromise embryo development. Lactating dairy cows were fed mixed silage and concentrates twice daily. At 60 days postpartum, a synchronized estrus was induced and the cows were subsequently superovulated and inseminated using a standard protocol. On Day 7 after insemination, the uteri were flushed and embryos retrieved. At the start of treatment, cows were randomly allocated into three nutritional groups: control (CONT, n = 8), long (L-) QDN (n = 8) and short (S-) QDN (n = 9). The L-QDN cows were fed a supplement of urea from 10 days before insemination, and the S-QDN cows were fed the supplement from insemination until embryo collection. Both L- and S-QDN diets produced significant increases in plasma ammonia and urea 3 h post-feeding. The S-QDN but not the L-QDN diet was associated with a significant reduction in embryo yield. Embryo quality was also significantly reduced in the S-QDN cows. This study indicates that there is no deleterious effect on the yield and quality of embryos recovered 7 days after breeding when QDN feeding is initiated during the previous midluteal phase. However, introduction of a similar diet 10 days later, at the time of insemination, was deleterious. We suggest that QDN is toxic to embryos but cows can adjust within 10 days.  相似文献   

13.
Reducing nitrogen (N) excretion by dairy cattle is the most effective means to reduce N losses (runoff, volatilization, and leaching) from dairy farms. The objectives of this review are to examine the use of milk urea nitrogen (MUN) to measure N excretion and utilization efficiency in lactating dairy cows and to examine impacts of overfeeding N to dairy cows in the Chesapeake Bay drainage basin. A mathematical model was developed and evaluated with an independent literature data set to integrate MUN and milk composition to predict urinary and fecal excretion, intake, and utilization efficiency for N in lactating dairy cows. This model was subsequently used to develop target MUN concentrations for lactating dairy cattle fed according to National Research Council (NRC) recommendations. Target values calculated in this manner were 8 to 14 mg/dl for a typical lactation and were most sensitive to change in milk production and crude protein intake. Routine use of MUN to monitor dairy cattle diets was introduced to dairy farms (n = 1156) in the Chesapeake Bay watershed. Participating farmers (n = 454) were provided with the results of their MUN analyses and interpretive information monthly for a period of 6 months. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results compared to those who did not participate in the program. This change indicated that participating farmers reduced N feeding compared to nonparticipants. Average efficiency of feed N utilization (N in milk / N in feed x 100) was 24.5% (SD = 4.5). On average, farmers fed 6.6% more N than recommended by the NRC, resulting in a 16% increase in urinary N and a 2.7% increase in fecal N compared to feeding to requirement. N loading to the Chesapeake Bay from overfeeding protein to lactating dairy cattle was estimated to be 7.6 million kg/year. MUN is a useful tool to measure diet adequacy and environmental impact from dairy farms.  相似文献   

14.
The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.  相似文献   

15.
Temperate pasture species constitute a source of protein for dairy cattle. On the other hand, from an environmental perspective, their high N content can increase N excretion and nitrogenous gas emissions by livestock. This work explores the effect of energy supplementation on N use efficiency (NUE) and nitrogenous gas emissions from the excreta of dairy cows grazing a pasture of oat and ryegrass. The study was divided into two experiments: an evaluation of NUE in grazing dairy cows, and an evaluation of N-NH3 and N-N2O volatilizations from dairy cow excreta. In the first experiment, 12 lactating Holstein × Jersey F1 cows were allocated to a double 3 × 3 Latin square (three experimental periods of 17 days each) and subjected to three treatments: cows without supplementation (WS), cows supplemented at 4.2 kg DM of corn silage (CS) per day, and cows supplemented at 3.6 kg DM of ground corn (GC) per day. In the second experiment, samples of excreta were collected from the cows distributed among the treatments. Aliquots of dung and urine of each treatment plus one blank (control – no excreta) were allotted to a randomized block design to evaluate N-NH3 and N-N2O volatilization. Measurements were performed until day 25 for N-NH3 and until day 94 for N-N2O. Dietary N content in the supplemented cows was reduced by 20% (P < 0.001) compared with WS cows, regardless of the supplement. Corn silage cows had lower N intake (P < 0.001) than WS and GC cows (366 v. 426 g/day, respectively). Ground corn supplementation allowed cows to partition more N towards milk protein compared with the average milk protein of WS cows or those supplemented with corn silage (117 v. 108 g/day, respectively; P < 0.01). Thus, even though they were in different forms, both supplements were able to increase (P < 0.01) NUE from 27% in WS cows to 32% in supplemented cows. Supplementation was also effective in reducing N excretion (761 v. 694 g/kg of Nintake; P < 0.001), N-NH3 emission (478 v. 374 g/kg of Nmilk; P < 0.01) and N-N2O emission (11 v. 8 g/kg of Nmilk; P < 0.001). Corn silage and ground corn can be strategically used as feed supplements to improve NUE, and they have the potential to mitigate N-NH3 and N-N2O emissions from the excreta of dairy cows grazing high-protein pastures.  相似文献   

16.
There are differences in grass-clover proportions and chemical composition between herbage from primary growth (PG) and regrowth (RG) in grass-clover leys. Mixing silages made from PG and RG may provide a more optimal diet to dairy cows than when fed separately. We tested the hypotheses that increasing dietary proportions of grass-clover silage made from RG compared with PG would increase digestion rate of potentially degradable NDF (pdNDF), and increase ruminal accumulation of indigestible NDF (iNDF). Eight rumen cannulated Norwegian Red cows were used in two replicated 4×4 Latin squares with 21-day periods. Silages were prepared from PG and RG of an organically cultivated ley, where PG and RG silages were fed ad libitum in treatments with RG replacing PG in ratios of 0, 0.33, 0.67 and 1 on dry matter basis in addition to 8 kg concentrate. We evaluated the effect of the four diets with emphasis on rumen- and total tract fiber digestibility. Increasing RG proportions decreased silage intake by 7%. Omasal flow of pdNDF decreased, whereas iNDF flow increased with increasing RG proportions. Increasing RG proportions decreased rumen pool sizes of NDF and pdNDF, whereas pool sizes of iNDF and CP increased. Increasing RG proportions increased digestion rate of NDF, which resulted in greater total tract digestion of NDF. Pure PG diet had the highest calculated energy intake, but the improved rumen digestion of NDF by cows offered 0.33 and 0.67 of RG leveled out milk fat and protein yields among the three PG containing diets.  相似文献   

17.
High plasma urea nitrogen (PUN) concentrations are associated with decreased fertility in lactating dairy cows. Our objective was to evaluate the quality of embryos flushed from superovulated lactating cows having moderate or high PUN concentrations. Subsequent embryo survival was determined after transfer to recipient heifers with either low or high PUN. Lactating Holstein dairy cows (n = 23; 50-120 days in milk) were randomly assigned to one of two diets designed to result in moderate or high PUN concentrations (15.5 +/- 0.7 and 24.4 +/- 1.0 mg/dl, respectively; P < 0.001) and were fed for 30 days before embryo flushing and recovery. Embryos (n = 94) were evaluated morphologically, frozen and subsequently transferred into synchronized virgin heifers that were fed one of two diets designed to result in either low or high PUN concentrations (7.7 +/- 0.9 and 25.2 +/- 1.5 mg/dl, respectively; P < 0.001; 2 x 2 factorial design). The number, quality and stage of development of recovered embryos were similar for cows with moderate or high PUN. Transfer of embryos from moderate PUN donor cows resulted in a higher pregnancy rate (35%; P < 0.02) than the transfer of embryos from high PUN donor cows (11%). Pregnancy rate was not affected by either recipient diet or the interaction of donor and recipient diets (P > 0.05). These results indicate that high PUN concentrations in lactating dairy cows decrease embryo viability through effects exerted on the oocyte or embryo before recovery from the uterus 7 days after insemination.  相似文献   

18.
Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings. Fresh clover grass was cut every morning and offered from 0800 to 1500 h. Maize silage was fed at 1530 h. The three treatments, arranged in a Latin square, differed by timing of feeding rolled barley and soya-bean hulls relative to fresh clover grass. All diets had the same overall composition. Treatments were soya-bean hulls fed at 0700 h and barley fed at 1530 h (SAM), barley fed at 0700 h and soya-bean hulls fed at 1530 h (BAM), and both soya-bean hulls and barley fed at 1530 h (SBPM). The grass had an unexpectedly low content of crude protein (12.7%) and the cows were severely undersupplied with rumen degradable protein. The treatment effects were numerically small; greater arterial ammonia concentration, net portal flux of ammonia and net hepatic flux of urea during part of the day were observed when no supplementary carbohydrate was fed before grass feeding. A marked diurnal variation in ruminal fermentation was observed and grass feeding increased ruminal concentrations of propionate and butyrate. The net portal fluxes of propionate, butyrate, isovalerate and valerate as well as the net hepatic uptake of propionate, butyrate, valerate and caproate increased after feeding at 0700 h. The hepatic extraction of butyrate showed a relatively large depression with grass feeding with nadir at 1200 to 1330 h. The increased net portal absorption and the decreased hepatic extraction resulted in an approximately six-fold increase in the arterial blood concentration of butyrate. The gut entry rate of urea accounted for 70 ± 10% of the net hepatic production of urea. Saliva contributed to 14% of the total amount of urea recycled to the gut. Urea recycling to the gut was equivalent to 58% of the dietary nitrogen intake. Despite the severe undersupply of rumen degradable protein, the portal-drained viscera did not extract more than 4.3% of the urea supplied with arterial blood. This value is in line with the literature values for cows fed diets only moderately deficient in rumen degradable protein and indicates that cows maximise urea transfer across gut epithelia even when the diet is moderately deficient in rumen degradable protein.  相似文献   

19.
Laboratory-scale experiments were carried out to test a mathematical model of the nitrogen dynamics in a composting process. The main ingredients of composting materials were wheat straw and dairy manure. The influence of (a) two carbon amendments, i.e. molasses and office paper, and (b) two chemicals forming buffer solutions on ammonia volatilization were investigated. Nitrogen losses amounted to 12-25% of initial nitrogen, in which ammonia volatilization accounted for 60-99%. Addition of molasses, a readily available form of carbon, reduced cumulative ammonia emissions substantially, but office paper, i.e. cellulose, had only a small influence. The addition of buffering chemicals did not significantly reduce ammonia volatilization.  相似文献   

20.
This experiment examined the long-term effects of offering diets containing low levels of dietary phosphorus (P) on dairy cow health, fertility and bone composition, and the effect of dietary P level on nutrient utilisation. One hundred winter-calving Holstein-Friesian dairy cows were offered diets containing either 'high' or 'low' levels of dietary P over a 4-year period. Rations offered during the winter included grass silage, maize silage (70 : 30 dry matter (DM) basis, approximately) and concentrates (10.0 to 12.0 kg/cow per day). During the summer periods in years 1 and 2, half of the cows grazed both day and night, while the remaining cows grazed by day, and were housed by night and offered grass silage. During years 3 and 4, all cows grazed both day and night during the summer period. Concentrate feed levels during the summer periods were 3.0 to 4.0 kg/cow per day. Different dietary P levels were achieved by offering concentrates containing either high or low P levels during the winter period (approximately 7.0 or 4.4 g P/kg DM, respectively) and during the summer period (approximately 6.8 or 3.6 g P/kg DM, respectively). Total ration P levels averaged 4.9 and 3.6 g P/kg DM for the high and low P winter diets, respectively, and 4.2 and 3.6 g P/kg DM for the high and low P summer diets, respectively. A total of 95, 70, 50 and 22 cows completed each of lactations from 1 to 4, respectively. Neither the incidence of lameness or mastitis, or milk somatic cell count, were affected by dietary P level (P > 0.05), while none of the fertility parameters recorded in any of lactations from 1 to 4 was affected by the dietary P level (P > 0.05). Dietary P level had no effect on the specific gravity, ash or calcium content of rib cortical bone cores (n = 78 cows), while the P content of cortical bone (g/kg fresh, g/kg DM and mg/ml fresh bone) was lower with cows offered low P diets (P < 0.05). Dietary P level had no significant effect on the digestibility of either the DM, nitrogen, energy or acid detergent fibre fraction of the diet (P > 0.05), while faecal P excretions were reduced by a mean of 27 g/cow per day with cows offered the low P diets during the winter period. The results of this study indicate that dietary P levels can be reduced to proportionately 0.8 (approximately) of current UK feeding standards (Agricultural and Food Research Council, 1991), with no detrimental effect on dairy cow health or fertility, while having only minor effects on bone composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号