首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
控释尿素减施对双季稻田氮素渗漏淋失的影响   总被引:5,自引:0,他引:5  
大量施用氮肥引起的土壤氮素淋失是稻田氮素损失的一个重要途径.为探究自然降雨过程中典型双季稻田氮渗漏淋失特点,采用田间渗漏池法,通过大田小区试验,研究控释尿素减施对稻田土壤60 cm深处渗漏水中氮淋失和水稻产量的影响.结果表明: 施肥初期出现氮渗漏淋失峰值,这是防控的关键时期;双季稻生长季控释尿素减氮20%(0.8CRU)和减氮30%(0.7CRU)处理全氮淋失量分别为42.3和37.7 kg·hm-2,均显著低于常规尿素(CU)处理(53.9 kg·hm-2),且0.7CRU处理显著低于等氮量控释尿素(1.0CRU)处理(51.3 kg·hm-2);各施氮处理全氮渗漏淋失率为11.9%~13.5%,处理间差异不显著.0.8CRU和0.7CRU处理较CU处理明显提高了水稻产量和氮肥吸收利用率,显著增加了氮收获指数.总之,控释尿素减氮 20%~30%能保证水稻产量和防控稻田氮渗漏淋失.  相似文献   

2.
通过田间试验,研究了硫膜和树脂膜控释尿素对小麦产量、品质和耕层土壤无机氮含量及氮素利用率的影响.结果表明:与普通尿素相比,硫膜和树脂膜控释尿素均能显著提高小麦籽粒产量和品质,增产幅度达10.4%~16.5%,小麦籽粒蛋白质和淀粉含量分别提高5.8%~18.9%和0.3%~1.4%;两种控释肥均能有效保持耕层土壤无机氮含量,且其氮素后移的功效满足了小麦生育后期对氮素的需求;有效提高了氮肥偏生产力,降低了土壤氮素依存率(降幅11.0%~17.3%),提高了氮素利用率(增幅58.2%~101.2%).其中,树脂膜控释尿素比硫膜控释尿素表现出更好的增产效应,实现了氮素的高效利用.  相似文献   

3.
Summary To determine effects of level and time of application of urea on grain yields, components of grain yield, and nitrogen use efficiency by irrigated direct seeded rice (Oryza sativa L. var. IR 298-12-1-1-1), three field experiments were conducted at the Gezira Agricultural Research Station during the period 1976–78. The treatments included the factorial combination of three levels of nitrogen as urea (0,75 and 150 kg N/ha) two or three splits, and three times of topdressing of urea (early season application, 10 days after rice emergence, DRE; maximum tillering stage, 40 DRE; and panicle initiation stage, 75 DRE).Without application of nitrogen, grain yields averaged 1.5 t/ha. The yields averaged for rate and time of split significantly increased with increase in nitrogen applied to 3.9 and 5.0 t/ha, but nitrogen use efficiency (kg rice/kg N) decreased from 31 to 23 with the application of 75 and 150 kg N/ha respectively.As compared to other treatments of time of urea application, topdressing of urea at maximum tillering and panicle initiation stages significantly improved nitrogen use efficiency by promoting production of more panicles per unit land area, and increasing grain weight. Three splits were no better than the two splits given at maximum tillering and panicle initiation stages.  相似文献   

4.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

5.
为提高鲜食玉米一次性施肥的氮肥利用率并降低氮肥的环境影响,通过田间试验,以不施氮处理为对照(CK),研究了控释尿素不同条施深度(0、5、10、15、20 cm)对鲜食玉米田间土壤氨挥发特征、鲜穗产量和氮肥利用率的影响. 结果表明: 玉米种植带和宽行非施肥带的土壤氨挥发主要发生在施肥后的前2周,而窄行施肥带的土壤氨挥发在施肥后持续约1个月. 与CK相比,控释尿素表施(0 cm)处理不仅大幅度地提高了窄行施肥带的氨挥发损失量,同时也显著增加了玉米种植带和宽行非施肥带的氨挥发损失量. 不同深度施肥处理全生育期土壤氨挥发损失总量差异较大,为3.1~25.5 kg N·hm-2,占施氮量的1.7%~14.2%.其中控释尿素条施10、15和20 cm深度处理的全生育期土壤氨挥发损失总量相差不大,分别较表施(0 cm)和浅施(5 cm)处理显著降低了85.9%~87.8%和67.0%~71.6%. 在一定范围内增加控释尿素条施深度有利于提高鲜穗产量、植株氮积累量以及氮肥偏生产力、氮肥农学利用率和氮肥表观利用率,各指标均以15 cm深度处理最高. 综上所述,控释尿素合理深施可以显著降低氨挥发损失,提高鲜穗产量和氮肥利用效率,本研究条件下控释尿素的最适宜施用深度为15 cm.  相似文献   

6.
Nitrogen (N) efficiency components and N accumulation parameters were determined for seven commercially available corn (Zea mays L.) hybrids grown on a Cecil sandy loam soil (Typic Hapludult) in the Southeasten U.S. The hybrids were grown in field plots at three soil pH levels (4.8, 5.5, and 6.6) and four N fertilizer rates (0.4, 1.8, 3.2, and 6.0, g plant−1). Nitrogen uilitzation efficiency (grain yield/total N uptake) was significantly different among hybrids in both 1983 and 1984. Differences in N use efficiency (grain yield/N supply) and N uptake efficiency (total N uptake/N supply) ranged from 100.4 to 114.6 and from 1.62 to 1.90, respectively, in 1984. Nitrogen fertilizer rate significantly affected all measured N accumulation and efficiency parameters except N uptake after silking in 1983. The results indicate that improving N uptake or soil N availability might increase grain yields for hybrids with higher N utilization efficiency.  相似文献   

7.
控释尿素施用方式及用量对夏玉米氮肥效率和产量的影响   总被引:15,自引:0,他引:15  
在大田条件下以不施氮为对照,研究了施氮量为75和150 kg N·hm-2条件下,普通尿素底施、控释尿素底施和侧施对夏玉米光合性能、氮肥效率和产量的影响.结果表明:与普通尿素相比,相同施氮水平下,包膜控释尿素处理玉米果穗叶光合速率、叶绿素含量、硝酸还原酶活性、籽粒灌浆速率均显著提高,玉米籽粒产量比普通尿素平均提高9.5%;与控释尿素侧施相比,底施使玉米籽粒产量提高6.2%.包膜控释尿素处理的氮肥农学利用率(AE)和偏生产力(PFP)比普通尿素平均分别提高74.5%和11.0%;与包膜控释尿素侧施相比,底施使AE和PFP分别提高26.8%和5.7%.控释尿素施用量较高时,玉米光合性能得到改善,产量、AE和PFP显著提高;与控释尿素侧施相比,底施对玉米产量、AE和PFP的增加效果更显著.  相似文献   

8.
用盆栽试验研究了12个冬小麦品种(TriticumaestivumL.)在低、高氮条件下的籽粒产量差异,及吸收和利用氮素的效率对其影响。结果证明在低氮处理中吸收效率和利用效率(UtEG)的共同影响导致了产量差异,但利用效率的影响更大;高氮处理则主要是吸收效率的影响,利用效率的影响较小。研究还发现能高效吸收或利用氮素的品种多为矮秆品种,因此高产品种多为矮秆。在低氮处理中的高产品种具有高效吸收或高效利用的特点;高氮处理中的高产品种主要具有高效吸收的特点,利用效率并不高。在所有品种中,只有低氮条件下的太核5025兼具高效吸收和高效利用的优点,说明多数品种的吸收、利用效率有待提高,以充分发挥氮肥的增产效果,达到少施氮肥多增产和保护环境的目的  相似文献   

9.
发生在水稻根际的硝化作用对水稻的氮素(N)营养受到人们越来越大的关注。在田间条件下研究了不同N效率粳稻品种(4007、武运粳7号和Elio)在无肥(0kgN/hm^2)、中肥(180kgN/hm^2)和高肥(300kgN/hm^2)水平下籽粒产量、吸N量、N肥利用率、根际土壤铵态氮(NH4^+-N)和硝态氮(NO3^--N)含量、硝化强度和氨氧化细菌(AOB)数量。结果表明不同水稻品种的籽粒产量在3个N处理中差异极显著,4007在中肥处理中获得最高产量11117kg/hm^2,而Eilo在所有处理中籽粒产量均最低。各品种地上部吸N量随施N量增加而增加,但各品种之间差异不显著。不同水稻品种N肥利用率差异显著,4007显著高于武运粳7号和Elio。本试验根据不同品种水稻在不施N肥水平下的籽粒产量与N肥利用率的大小,将3个品种分为N肥高效敏感型(4007)、N肥高效不敏感型(武运粳7号)和N肥低效不敏感型(Elio)。在水稻中后期干湿交替的水分管理条件下,无肥和中肥区的水稻根际土壤以NO3^--N为主;而在高肥区则以NH4^+-N为主。随着施N量增加,水稻根际土壤铵、硝态N含量也随之增加。NH4^+-N含量在无肥、中肥和高肥水平下分别为0.88、0.94mg/kg和13.5mg/kg,而NO3^--N含量分别为1.61、1.73mg/kg和2.33mg/kg。不同水稻品种根际土壤硝化强度之间差异极显著,在3个施N水平下均表现为4007〉武运粳7号〉Elio。其平均值分别为6.94、5.46μg/(kg·h)和2.42μg/(kg·h)。在3个施N水平下,Elio根际土壤AOB数量均显著低于4007和武运粳7号。4007根际土壤AOB数量在高肥水平下达最大值2.02×106个/g土,而最小值为中肥水平下Elio的根际土壤(1.89×105个/g土)。相关性分析表明,水稻根际土壤硝化强度在无肥、中肥和高肥条件下与产量呈极显著正相关关系(r=0.799,0.877,0.934),而且在中肥条件下与水稻N肥利用率显著相关(r=0.735)。水稻根际土壤AOB数量分别和硝化强度以及水稻籽粒产量呈极显著正相关关系。试验结果表明,水稻根际的硝化作用较大程度上决定着水稻籽粒产量或水稻N肥利用率。  相似文献   

10.
深松与包膜尿素对玉米田土壤氮素转化及利用的影响   总被引:4,自引:0,他引:4  
耕作方式和氮肥施用是影响土壤中氮肥转化、利用效率和作物产量的重要因素。通过夏玉米田的2a(2011—2012)定位试验,研究了两种耕作方式(深松、旋耕)配合不同尿素类型(包膜尿素、普通尿素)的施用对玉米田土壤硝态氮和铵态氮含量、脲酶活性、硝化细菌和反硝化细菌数量、玉米产量以及氮肥农学效率的影响。研究结果表明:相同耕作方式下,包膜尿素处理土壤中脲酶活性较稳定,且增加了旱田土壤亚硝酸细菌数量而降低了反硝化细菌数量,有利于土壤硝态氮含量的提高,尤其是作物生长的中后期;包膜尿素处理的产量比普通尿素提高7.25%—10.82%,同时提高氮肥农学效率。深松处理增加了土壤中的反硝化细菌数量,配合施用包膜尿素进一步提高了土壤脲酶活性,增加了亚硝酸细菌数量;旋耕与包膜尿素配合施用在一段时期内能显著增加土壤硝态氮含量,减少反硝化细菌数量。深松配合包膜尿素处理能够显著的增加玉米产量,2a分别比旋耕配合包膜尿素增加1.41%和10.62%。因此,深松措施配合施用包膜尿素能够增强土壤脲酶活性,增加亚硝酸细菌数量,提高氮素转化速率,增加作物产量和氮肥农学效率,其稳产效果在干旱年份尤为显著。  相似文献   

11.
控失尿素对稻田氨挥发、氮素转运及利用效率的影响   总被引:7,自引:0,他引:7  
通过田间试验,以普通尿素分次施用处理(CU)为对照,研究了控失尿素分次施用(LCUS)和一次施用(LCUB)对水稻田土壤氨挥发特征、水稻氮素营养状况、稻谷产量及氮肥利用效率的影响. 结果表明: 普通尿素分次施用、控失尿素分次施用和控失尿素一次施用条件下,生育期氨挥发总量占总施氮量的比例分别为15.8%、13.4%和19.7%. 与普通尿素分次施用处理相比,控失尿素分次施用处理可降低土壤氨挥发损失量4.4 kg N·hm-2,降幅达18.0%,而控失尿素一次施用处理稻田土壤氨挥发总量却增加了7.2 kg N·hm-2,增幅达24.7%. 与普通尿素分次施用处理相比,控失尿素分次施用处理的水稻叶片叶绿素、籽粒和茎叶氮含量与氮素积累量、稻谷产量均有不同程度提高,氮肥利用率显著提高了7.6%,但氮素转运量、转运率和对穗氮贡献率均显著降低,而控失尿素一次施用处理的水稻叶片叶绿素、籽粒和茎叶氮含量与氮素积累量以及氮肥利用率均显著降低,氮素转运量、转运率、对穗氮贡献率以及稻谷产量无显著差异. 综上所述,控失尿素分次施用处理可以在保证稻谷稳产的同时,有效降低稻田土壤氨挥发损失,改善植株氮素营养状况,显著提高氮肥利用效率.  相似文献   

12.
减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响   总被引:29,自引:4,他引:29  
研究了冬小麦-夏玉米种植体系中减量施N对作物N利用与平衡的影响,结果表明,与原有高量施N处理(N240和N360)相比,在冬小麦季减半施N未引起产量和吸N量的变化。但在原有低量施N处理(N120)下减半施N显著降低了小麦产量和吸N量;在夏玉米季,在上季减半施N的基础上停止施N后作物产量和吸N量均比原固定施N处理显著下降,N平衡计算结果表明,减量施N条件下0~1m土壤N残留和表观损失的数量均显著低于原有施N量处理,作物N利用率显著提高,但在1~2m层次中累积的硝态氮却不因减量施N而下降,说明这一土层的硝态氮可能难以被作物吸收利用,由此可见,在前茬高施N量下减少氮肥用量有利于提高作物的氮肥利用率、减少N残留与表观损失。  相似文献   

13.
Variations in crop grain and soil N isotope composition (δ15N) in relation to liquid hog manure (δ15N of total N was +5.1‰), solid cattle manure (+7.9‰) and chemical fertilizer (+0.7‰ for urea and −1.9‰ for ammonium phosphate) applications, and control (no fertilizer application) were examined through a 4-year crop rotation under field conditions. Canola (Brassica napus), hull-less barley (Hordeum vulgare), wheat (Triticum aestivum), and canola were grown sequentially from 2000 (year 1) to 2003 (year 4). From year 2, hog manure or chemical fertilizers, but not cattle manure, treatments increased grain N concentrations over the control. Grain δ15N (+0.3 to +2.5‰) of crops applied with chemical fertilizers was lower than those in the other treatments, reflecting the effects of the N source with a lower δ15N, while the manure treatments tended to increase grain δ15N. The higher grain δ15N of crops applied with hog manure (+5.6 to +8.4‰) than those applied with cattle manure (+2.2 to +4.1‰) reflected the higher N availability of liquid hog manure (up to 70% as NH 4 + ) than solid cattle manure (99% organic N) and higher potentials for ammonia volatilization loss in hog manure rather than differences in manure δ15N signatures. Soil total- and extractable-N concentrations and δ15N tended to vary with the application of N sources with different N isotope composition and availability. Our study expanded the application of the δ15N technique for detecting N source (organic vs chemical) effects on N isotopic composition to field conditions and across a 4-year rotation, and revealed that N availability played a greater role than the δ15N signature of N sources in determining crop δ15N under the studied conditions. Section Editor: H. Lambers  相似文献   

14.
Summary In a field experiment on wheat, N-lignin was found as effective as urea in increasing grain yield and nitrogen uptake by the crop. N-lignin also left higher amount of fertilizer residue in the hydrolysable organic-N fraction in the soil than did urea. The effect of margosa (neem) seed cake blended urea on the grain yield, N uptake and soil N was similar to ordinary urea. Supplementing N-lignin with urea did not show any advantage.Phosphorus uptake by wheat crop was enhanced and potassium uptake was depressed by application of N-lignin. Neem seed cake also stimulated phosphorus uptake slightly but had no effect on potassium uptake.  相似文献   

15.
15N标记水稻控释氮肥对提高氮素利用效率的研究   总被引:42,自引:0,他引:42  
本文应用^15N示踪技术研究了水稻对空控释氮肥和尿素氮吸收利用效率的影响以及氮的去向,结果表明:施肥后11天内,水稻控释氮肥和尿素的NH3挥发损失分别占施入氮量的0.69%和1.81%,NH3的挥发损失在施肥后第5天时达到最大值,此后逐渐降低。水稻控释氮肥和尿素氮的淋溶损失分别占施入氮量的0.95%和1.02%,水稻控释氮肥氮的淋溶损失在水稻整个生长期间均比较平缓,施肥后40天时略有上升,此后又缓慢降低。用氮素平衡帐中的亏缺量和缺量扣除氨的损失量后计为硝化-反硝化损失量的结果表明,水稻控制氮肥氮的硝化-反硝化损失量占施氮量的3.46%,而尿素氮在硝化-反硝化损失量却高达37.75%,肥料氮在土壤中的残留主要集中在0~35cm的土层中,达91.4%-91.5%,残留在35cm以下土层中的氮甚微,水稻控制氮肥残留在土壤中的氮量略高于尿素处理。水稻控释氮肥利用率高达73.8%,比尿素高出34.9%,水稻控释氮肥氮利用率高的原因是因氮从颗粒中缓慢释放、受淋溶、氨挥发、尤其受硝化-反硝化途径损失的氮较少。在施等氮量的条件下,施用水稻控制氮肥的稻谷产量比尿素的增产25.5%,达到p=0.05的显著水平。  相似文献   

16.
农田水氮关系及其协同管理   总被引:6,自引:0,他引:6  
作物施氮反应及其氮肥利用率不仅取决于氮肥管理,还与水资源管理有关,并且受到地区气候因素的影响。针对中国灌溉农区氮肥环境污染问题日益突出,协调农田水氮管理,如通过改善水资源管理,发挥水氮协同效应,以提高水分利用效率来改善氮肥利用率,实现水氮利用率双赢,是当前农业水氮管理中亟待探讨和回答的问题。通过对农田水氮协同相关研究文献资料的综述,以华北平原集约种植体系水氮管理为例,根据历年统计数据,分析了该区年水热条件下粮食产量与水、氮及水氮利用效率之间的关系。研究表明,水和氮与作物产量在一定范围表现为水氮的协同效应。水分利用效率一般随灌溉水量减少及氮肥用量增加而提高;氮肥利用效率随氮用量增加而下降。适量节水和减氮分别有助水分利用效率和氮肥利用效率的改善。在气候变暖、变干条件下,适量施氮成为改善水氮利用效率的关键对策。  相似文献   

17.
Nitrogen (N)-deficiency and lack of phosphorus (P) availability are major constraints to maize yields in Western Kenya. In a two-season field study in the lake Victoria basin, we tested the capacity of white lupin (Lupinus albus (L.), cv. Ultra), as a nitrogen-fixing crop with a highly efficient P-acquisition capacity, to increase maize yields when used as a companion or cover crop, or as a source of organic matter. Each experiment was performed on three different fields (Vertisols) differing in N/P availability, previous cropping history and in levels of infestation by the parasitic weed Striga hermonthica (Del.) Benth. Our results show that white lupin led to significantly higher yields of maize when used as a cover crop. When lupin was grown as a companion crop, it also slightly enhanced the yield of the co-cultivated maize. When lupin shoots were incorporated to the soil, the positive effect of lupin on maize growth was field-dependent and only occurred in the field most heavily infested with S. hermonthica. Despite the beneficial impact on maize yield, no clear effect of lupin on soil N and P availability or on maize N/P uptake were observed. In contrast, lupin significantly inhibited infestation of maize by S. hermonthica: when lupin was grown together with maize in pots inoculated with S. hermonthica, the emergence of the weed was strongly reduced compared to the pots with maize only. This work opens a new range of questions for further research on white lupin and its potential beneficial impact as a S. hermonthica-inhibiting crop.  相似文献   

18.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

19.
Summary In order to improve nitrogen recovery by rice, the effect of a urease inhibitor phenylphosphorodiamidate (PPD) on the efficiency of fertilizer urea was studied in laboratory and greenhouse. Addition of PPD to urea (5% w/w) delayed urea hydrolysis by 3 to 4 days and reduced ammonia volatilization from 45% (without PPD) to 8.5% (with PPD). Ammonia volatilization obeyed first order kinetics. Urea hydrolysis was sufficiently strongly inhibited to match the nitrification potential of the soil. N application to rice by three different modes showed that a delayed mode (4 splits) was superior to two conventional modes (3 splits) in nitrogen recovery and fertilizer efficiency since it met nitrogen requirement of plants at reproductive stage. In 2 out of 3 modes of application, there was a 14% increase (relative) in grain yields and dry matter, and 6.8% increase in N uptake efficiency on application of PPD along with urea. The results indicate that urease inhibitors like PPD can be effectively used to block urea hydrolysis, reduce ammonia volatilization losses and improve N use efficiency by rice.  相似文献   

20.
The need to promote fertiliser use by African smallholder farmers to counteract the current decline in per capita food production is widely recognised. But soil heterogeneity results in variable responses of crops to fertilisers within single farms. We used existing databases on maize production under farmer (F-M) and researcher management (R-M) to analyse the effect of soil heterogeneity on the different components of nutrient use efficiency by maize growing on smallholder farms in western Kenya: nutrient availability, capture and conversion efficiencies and crop biomass partitioning. Subsequently, we used the simple model QUEFTS to calculate nutrient recovery efficiencies from the R-M plots and to calculate attainable yields with and without fertilisers based on measured soil properties across heterogeneous farms. The yield gap of maize between F-M and R-M varied from 0.5 to 3 t grain ha?1 season?1 across field types and localities. Poor fields under R-M yielded better than F-M, even without fertilisers. Such differences, of up to 1.1 t ha?1 greater yields under R-M conditions are attributable to improved agronomic management and germplasm. The relative response of maize to N–P–K fertilisers tended to decrease with increasing soil quality (soil C and extractable P), from a maximum of 4.4-fold to ?0.5-fold relative to the control. Soil heterogeneity affected resource use efficiencies mainly through effects on the efficiency of resource capture. Apparent recovery efficiencies varied between 0 and 70% for N, 0 and 15% for P, and 0 to 52% for K. Resource conversion efficiencies were less variable across fields and localities, with average values of 97 kg DM kg?1 N, 558 kg DM kg?1 P and 111 kg DM kg?1 K taken up. Using measured soil chemical properties QUEFTS over-estimated observed yields under F-M, indicating that variable crop performance within and across farms cannot be ascribed solely to soil nutrient availability. For the R-M plots QUEFTS predicted positive crop responses to application of 30 kg P ha?1 and 30 kg P ha?1 + 90 kg N ha?1 for a wide range of soil qualities, indicating that there is room to improve current crop productivity through fertiliser use. To ensure their efficient use in sub-Saharan Africa mineral fertilisers should be: (1) targeted to specific niches of soil fertility within heterogeneous farms; and (2) go hand-in-hand with the implementation of agronomic measures to improve their capture and utilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号