首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) losses from cattle feedlots are of concern due to loss of valuable N and enrichment of the atmospheric N pool. Nutritional methods to decrease such losses would have economic and environmental benefits. One method to decrease N losses is by increasing carbon (C) on the pen surface. The most cost effective method of decreasing N losses with C may be feeding diets lower in digestibility compared to adding C directly to pens. Therefore, three experiments evaluated feeding corn bran (which is less digestible than corn) as either 0, 15, or 30% of the diet. The 15- and 30%-bran diets increase organic matter (OM) excretion by approximately 0.5 and 1.0 kg per steer per day, respectively. Compared with no bran, feeding 15 and 30% decreased feed efficiency by 7.8 and 10.4%, respectively. Nutrient balance was assessed in two trials from October through May and in one trial from June to September. During the trials from October to May, N losses were decreased by 14.5 and 20.7% for the 15- and 30%-bran diets compared with no bran. Feeding 15 or 30% bran did not influence N losses in the experiment from June to September. Increasing the C:N ratio of manure prior to cleaning open-dirt feedlots had variable results depending on time of year.  相似文献   

2.
Nitrogen emissions from dairy cows can be readily decreased by lowering the dietary CP concentration. The main objective of this work was to test whether the milk protein yield reduction associated with low N intakes could be partially compensated for by modifying the dietary carbohydrate composition (CHO). The effects of CHO on digestion, milk N efficiency (milk N/N intake; MNE) and animal performance were studied in four Jersey cows fed 100% or 80% of the recommended protein requirements using a 4×4 Latin square design. Four iso-energetic diets were formulated to two different CHO sources (starch diets with starch content of 34.3% and NDF at 32.5%, and fiber diets with starch content of 5.5% and NDF at 49.1%) and two CP levels (Low=12.0% and Normal=16.5%). The apparent digestible organic matter intake (DOMI) and the protein supply (protein digestible in the small intestine; PDIE) were similar between starch and fiber diets. As planned, microbial N flow (MNF) to the duodenum, estimated from the urinary purine derivatives (PD) excretion, was similar between Low and Normal CP diets. However, the MNF and the efficiency of microbial synthesis (g of microbial N/kg apparently DOMI) were higher for starch v. fiber diets. Milk and milk N fractions (CP, true protein, non-protein N (NPN)) yield were higher for starch compared with fiber diets and for Normal v. Low CP diets. Fecal N excretion was similar across dietary treatments. Despite a higher milk N ouput with starch v. fiber diets, the CHO modified neither the urinary N excretion nor the milk urea-N (MUN) concentration. The milk protein yield relative to both N and PDIE intakes was improved with starch compared with fiber diets. Concentrations of β-hydroxybutyrate, urea and Glu increased and those of glucose and Ala decreased in plasma of cows fed starch v. fiber diets. On the other hand, plasma concentration of albumin, urea, insulin and His increased in cows fed Normal compared with Low CP diets. This study showed that decreasing the dietary CP proportion from 16.5% to 12.0% increases and decreases considerably the MNE and the urinary N excretion, respectively. Moreover, present results show that at similar digestible OM and PDIE intakes, diets rich in starch improves the MNE and could partially compensate for the negative effects of Low CP diets on milk protein yield.  相似文献   

3.
Nahm KH 《Bioresource technology》2007,98(12):2282-2300
This summary focuses on reducing nitrogen (N) and ammonia emissions from poultry manure through the use of improved amino acid digestibilities and enzyme supplementation. Proper feed processing techniques, phase feeding, and the minimization of feed and water waste can contribute to additional minor reductions in these emissions. Reductions in environmental pollution can be achieved through improved diet formulation based on available nutrients in the ingredients, reducing crude protein (CP) levels and adding synthetic amino acids. Use of amino acid and CP digestibilities can reduce N excretion up to 40% and a 25% increase in N digestibility can be achieved with enzyme supplementation in broiler diets. Digestibilities can be measured by two methods: the excreta and ileal amino acid digestibilities. Both methods allow amino acid levels to be reduced by 10% or more. Enzyme supplementation decreases intestinal viscosity, improves metabolizable energy levels, and increases amino acid digestibilities. Many feed manufacturers still use total amino acid content to formulate feeds. To meet amino acid requirements, crystalline amino acids are needed. The use of feather, meat and bone meal must not be overestimated or underestimated and the limiting amino acids such as cystine, tryptophan, and threonine must be carefully analyzed.  相似文献   

4.
We studied bred and unbred female reindeer (Rangifer tarandus tarandus) during 12 wk of winter when ambient temperatures were low and nitrogen (N) demand for fetal growth is highest in pregnant females. Animals were fed a complete pelleted diet ad lib. that contained 2.54% N in dry matter that was 80% +/- 2% (X +/- SD) digestible. Female reindeer lost 64% +/- 14% of body fat but gained 34% +/- 11% of lean mass from 10 wk prepartum to parturition. These changes were equivalent to average balances of -14.14 +/- 2.35 MJ d(-1) and 10 +/- 3 g N d(-1). Blood cells, serum, and urine declined in (15)N/(14)N in late winter as body protein was gained from the diet. Blood cells of newborn calves were more enriched in (15)N and (13)C than that of their mothers, indicating the deposition of fetal protein from maternal stores. To quantify pathways of N flow in reindeer, N balance was measured by confining animals to cages for 10 d at 4 wk from parturition. N balance was inversely related to (15)N/(14)N in urea-N but not related to (15)N/(14)N of blood cells, creatinine, and feces. The proportion of urea-N derived from body protein increased above 0.46 as N balance fell below -200 mg N kg(-0.75) d(-1). Proportions of urea-N from body protein were -0.01 +/- 0.21 in pregnant females before and after caging and were consistent with average body protein gain in winter. Storage of protein allows reindeer and caribou to tolerate diets that are low in N without impairing fetal development.  相似文献   

5.
The conversion of two‐thirds of New Zealand's native forests and grasslands to agriculture has followed trends in other developed nations, except that pastoral grazing rather than cropping dominates agriculture. The initial conversion of land to pasture decreased soil acidity and elevated N and P stocks, but caused little change in soil organic C stocks. However, less is known about C and nutrient stock changes during the last two decades under long‐term pastoral management. We resampled 31 whole soil profiles in pastures spanning seven soil orders with a latitudinal range of 36–46°S, which had originally been sampled 17–30 years ago. We measured total C, total N, and bulk density for each horizon (generally to 1 m) and also reanalyzed archived soil samples of the same horizons for C and N. On average, profiles had lost significant amounts of C (− 2.1 kg C m−2) and N (− 0.18 kg N m−2) since initial sampling. Assuming a continuous linear decline in organic matter between sampling dates, significant losses averaged 106 g C m−2 yr−1 (P=0.01) and 9.1 g N m−2 yr−1 (P=0.002). Removal of C through leaching and erosion appears too small to explain these losses, suggesting losses from respiration exceed the inputs of photosynthate in the soil profile. These results emphasize that resampling soil profiles provide a robust method for detecting soil C changes, and add credence to the suggestion that soil C losses may be occurring in some temperate soil profiles. Further work is required to determine whether these losses are continuing and how losses might be extrapolated across landscapes to determine the implications for New Zealand's national CO2 emissions and the sustainability of the implied rates of soil N loss.  相似文献   

6.
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4×4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.  相似文献   

7.
Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.  相似文献   

8.
The aim of this work was to test the robustness of the 0.68 estimate of the efficiency of conversion of metabolisable protein into true milk protein (Agriculture and Food Research Council (AFRC), 1993) for protein-limiting diets and to determine whether a different value is appropriate for practical rationing. Seventy-two multiparous cows were blocked on the basis of milk energy output per unit of dry matter intake (DMI), and allocated at random to one of four treatments. Treatments supplied metabolisable energy (ME) at a fixed level to individuals within a block, but varied metabolisable protein (MP) supply from 25% below the estimated requirements, through -12.5% and +12.5% up to 25% above requirements for the average performance of animals within blocks at the start of the study. Cows were offered diets to meet their predicted ME requirements for each 3-week period with measurements performed in the last week of each period. Milk protein output was regressed against the estimated MP available for production for each cow and the efficiency of conversion of MP into milk true protein was calculated, assuming a maintenance requirement according to the MP system. The efficiency of conversion of MP into milk true protein decreased with the increasing supply of MP from 0.77 to 0.50. Using an iterative approach to determine the best fit of the data when supply matched requirement resulted in a range of efficiency values between 0.62 and 0.64 g of true milk protein per g of MP.  相似文献   

9.
Long-term prescribed fires have increased woody canopy openness and reduced nitrogen (N) cycling (that is, net N mineralization) in an oak savanna in Minnesota, USA. It is unclear how fire-induced shifts from oak-dominated to C4 grass-dominated vegetation contribute to this decline in N cycling compared to direct effects of increasing fire frequency promoting greater N losses. We determined (1) the magnitude of decline in net N mineralization in oak versus grass-dominated patches with increasing fire frequency and (2) if differences in net N mineralization between oak and grass patches in frequently burned oak savanna (burned 8 out of 10 years on average during the last 40 years) could be attributed to differences in N losses through volatilization and leaching or to plant traits affecting decomposition and mineralization. In situ net N mineralization declined with increasing fire frequency overall, but this decline was less in oak- than in grass-dominated patches, with oak-dominated patches having more than two times higher net N mineralization than grass-dominated patches. Greater net N mineralization in oak-dominated patches occurred despite greater N losses through volatilization and leaching (on average 1.8 and 1.4 g m−2 y−1 for oak- and grass-dominated patches, respectively), likely because of higher plant litter N concentration in the oak-dominated patches. As total soil N pools in the first 15 cm did not differ between oak- and grass-dominated patches (on average 83 g N m−2), N inputs from atmospheric deposition and uptake from deep soil layers may offset higher N losses. Our results further show that net N mineralization rates decline within 5 years after tree death and subsequent colonization by C4 grasses to levels observed in grass-dominated patches. Although long-term prescribed fires often directly reduce N stocks and cycling because of increased N losses, this study has shown that fire-induced shifts in vegetation composition can strongly contribute to the declines in N cycling in systems that are frequently disturbed by fires with potential feedbacks to plant productivity.  相似文献   

10.
Results from thirteen years of weekly observations are presented on the nitrogen cycle in Lough Neagh. The data comprised catchment and atmospheric inputs, output via the outflow and calculated losses by sedimentation and denitrification. Nitrate-nitrogen in the rivers is the dominant input fraction and the nitrate loading has increased over the period observed. 52 % of the input N sediments to the lake bottom, but 65 % of this is lost by denitrification. In spite of increasing nitrogen inputs, the summer soluble nitrate concentrations have decreased due to uptake by a perpetual crop of the cyanobacterium Oscillatoria agardhii GOMONT .  相似文献   

11.
Human activity is drastically altering global nitrogen (N) availability. The extent to which ecosystems absorb additional N—and with it, additional CO2—depends on whether net primary production (NPP) is N-limited, so it is important to understand conditions under which N can limit NPP. Here I use a general dynamical model to show that N limitation at steady-state—such as in old-growth forests—depends on the balance of biotically controllable versus uncontrollable N inputs and losses. Steady-state N limitation is only possible when uncontrollable inputs (for example, atmospheric deposition) exceed controllable losses (for example, leaching of plant-available soil N), which is the same as when uncontrollable losses (for example, leaching of plant-unavailable soil N) exceed controllable inputs (biological N fixation). These basic results are robust to many model details, such as the number of plant-unavailable soil N pools and the number and type of N fixers. Empirical data from old-growth tropical (Hawai’i) and temperate (Oregon, Washington, Chile) forests support the model insights. Practically, this means that any N fixer—symbiotic or not—could overcome ecosystem N limitation, so understanding N limitation requires understanding controls on all N fixers. Further, comparing losses of plant-available N to abiotic inputs could offer a rapid diagnosis of whether ecosystems can be N-limited, although the applicability of this result is constrained to ecosystems with a steady-state N cycle such as old-growth forests largely devoid of disturbance.  相似文献   

12.
The intensification of livestock have increased the emission of pollutants to the environment, leading to a growing interest in seeking strategies that minimise these emissions. Studies have shown that it is possible to manipulate diets by reducing CP levels and thus reducing nitrogen (N) excretion, without compromising performance. However, there is no knowledge of any study that has focused on reducing N excretion and relating this reduction to individual amino acids. This study investigated the effect of dietary methionine+cysteine (MC) and threonine (THR), the two most limiting amino acids for broiler production, on nitrogen excretion (NE) and nitrogen deposition (ND) and determined the efficiency of utilisation of both amino acids for protein deposition. Six trials were conducted to measure the NE and ND in broiler chickens during three rearing phases in response to dietary amino acid. The efficiency of utilisation of the amino acids was calculated by linear regression of body protein deposition and the amino acid intake. Despite the differences between sexes and phases, the efficiency of utilisation was the same, being 0.60 and 0.59 for MC and THR, respectively. The rate of NE behaved exponentially, increasing with amino acid intake, and can exceed 50% of N intake, being higher than ND. On average, for a reduction in intake of each unit of MC or THR (mg) there is a reduction of 0.5% of NE. Although this reduction seems low, considering that it corresponds to changes in one amino acid only, the impact on a large scale would be significant. Knowledge of how animals respond to NE and ND/protein deposition according to amino acid dietary content may represent new efforts towards reducing the impact on environment.  相似文献   

13.
The overall objective of this study was to calculate the amount of nitrogen (N) that cattle feed must contain in order to utilise the potential supply of utilisable crude protein at the duodenum provided by their energy intake without incurring a negative N balance, that is, without having to break down body protein. For this purpose, the literature was screened for measurements of net degradation and renal excretion of urea as well as N balances (N intake, faecal N and urinary N) in ruminants (cattle, sheep and goats) fed diets with varying N concentrations. Irreversible loss of N from the body urea pool increased with increasing N intake, but net degradation of urea as a proportion of irreversible loss decreased concurrently. Faecal N appeared not to be influenced by N intake and exceeded 11 g/kg dry matter intake (DMI) only in 7% of the data sets available. Urinary non-urea-N rarely exceeded 4 g/kg DMI and appeared independent of N intake. Urinary urea-N showed a clear dependence of N intake, and it is concluded that 1 g N/kg DMI is sufficient for compensating inevitable N losses in the form of urinary urea. In conclusion, ruminant rations should contain the following N concentrations (per kg DM) to account for obligatory losses: 11 g for compensating losses as faecal N, 4 g for compensating losses as urinary non-urea-N and 1 g for compensating inevitable losses as urinary urea-N. The derived recommendations should be helpful for limiting N excretion where this is desirable for ecological reasons.  相似文献   

14.
Reducing nitrogen (N) excretion by dairy cattle is the most effective means to reduce N losses (runoff, volatilization, and leaching) from dairy farms. The objectives of this review are to examine the use of milk urea nitrogen (MUN) to measure N excretion and utilization efficiency in lactating dairy cows and to examine impacts of overfeeding N to dairy cows in the Chesapeake Bay drainage basin. A mathematical model was developed and evaluated with an independent literature data set to integrate MUN and milk composition to predict urinary and fecal excretion, intake, and utilization efficiency for N in lactating dairy cows. This model was subsequently used to develop target MUN concentrations for lactating dairy cattle fed according to National Research Council (NRC) recommendations. Target values calculated in this manner were 8 to 14 mg/dl for a typical lactation and were most sensitive to change in milk production and crude protein intake. Routine use of MUN to monitor dairy cattle diets was introduced to dairy farms (n = 1156) in the Chesapeake Bay watershed. Participating farmers (n = 454) were provided with the results of their MUN analyses and interpretive information monthly for a period of 6 months. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results compared to those who did not participate in the program. This change indicated that participating farmers reduced N feeding compared to nonparticipants. Average efficiency of feed N utilization (N in milk / N in feed x 100) was 24.5% (SD = 4.5). On average, farmers fed 6.6% more N than recommended by the NRC, resulting in a 16% increase in urinary N and a 2.7% increase in fecal N compared to feeding to requirement. N loading to the Chesapeake Bay from overfeeding protein to lactating dairy cattle was estimated to be 7.6 million kg/year. MUN is a useful tool to measure diet adequacy and environmental impact from dairy farms.  相似文献   

15.
Most birds are uricotelic. An exception to this rule may be nectar-feeding birds, which excrete significant amounts of ammonia under certain conditions. Although ammonia is toxic, because it is highly water soluble its excretion may be facilitated in animals that ingest and excrete large amounts of water. Bird-pollinated plants secrete carbohydrate- and water-rich floral nectars that contain exceedingly little protein. Thus, nectar-feeding birds are faced with the dual challenge of meeting nitrogen requirements while disposing of large amounts of water. The peculiar diet of nectar-feeding birds suggests two hypotheses: (1) these birds must have low protein requirements, and (2) when they ingest large quantities of water their primary nitrogen excretion product may be ammonia. To test these hypotheses, we measured maintenance nitrogen requirements (MNR) and total endogenous nitrogen losses (TENL) in three hummingbird species (Archilochus alexandri, Eugenes fulgens, and Lampornis clemenciae) fed on diets with varying sugar, protein, and water content. We also quantified the form in which the by-products of nitrogen metabolism were excreted. The MNR and TENL of the hummingbirds examined were exceptionally low. However, no birds excreted more than 50% of nitrogen as ammonia or more nitrogen as ammonia than urates. Furthermore, ammonia excretion was not influenced by either water or protein intake. The smallest species (A. alexandri) excreted a significantly greater proportion (>25%) of their nitrogenous wastes as ammonia than the larger hummingbirds ( approximately 4%). Our results support the hypothesis that nectar-feeding birds have low protein requirements but cast doubt on the notion that they are facultatively ammonotelic. Our data also hint at a possible size-dependent dichotomy in hummingbirds, with higher ammonia excretion in smaller species. Differences in proportionate water loads and/or postrenal modification of urine may explain this dichotomy.  相似文献   

16.
Estavillo  J.M.  Rodrí  M.  Lacuesta  M.  González-Murua  C. 《Plant and Soil》1997,188(1):49-58
It is essential to establish more accurate N balances for different soil-plant systems in order to improve N use efficiency. In this study the N balance was studied in a poorly drained clayey loam soil under natural grassland supplied with either calcium ammonium nitrate or cattle slurry at two application rates. The aim was to determine the efficiency of the N applied and the factors which affect this efficiency. Mineralization-immobilization of N was calculated by balance between the quantified inputs and outputs of N. As N inputs increased, output via herbage yield was accompanied by an increase in apparent immobilization of N in the soil and by larger losses of N by denitrification. The difference between cattle slurry and N fertilizer was that the slurry behaved as a slow release fertilizer, its supply of mineral N being greater in the periods of time when fertilizer was applied a long time ago. Denitrification losses (up to 17% of the N applied) are suggested to be the main factor to mitigate in order to increase N use efficiency. A decrease in net mineralization (up to 136 kg N ha-1 year-1) was observed which was related to the mineral N application rate. There was evidence to suggest that this decrease was due both to the immobilization of the N applied and to a decrease in the rate of gross mineralization when mineral N was applied. Microbial biomass determinations could not explain the changes in the mineralization-immobilization equilibrium of N because of the great coefficients of variation for this determination (mean value of 18%). Nevertheless, it contributed to verify and explain some of the changes observed in this equilibrium.  相似文献   

17.
The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.  相似文献   

18.
We determined the effect of water and nitrogen intake on nitrogenous waste composition in the nectarivorous Pallas's long-tongued bat Glossophaga soricina (Phyllostomidae) to test the hypothesis that bats reduce excretion of urea nitrogen and increase the excretion of ammonia nitrogen as nitrogen intake decreases and water intake decreases. Because changes in urine nitrogen composition are expected only in animals whose natural diets are low in nitrogen and high in water content, we also measured maintenance nitrogen requirements (MNR). We hypothesized that, similar to other plant-eating vertebrates, nectarivorous bats have low MNR. Our nitrogen excretion hypothesis was partly proved correct. There was an increase in the proportion of N excreted as ammonia and a decrease in the proportion excreted as urea in low-nitrogen diets. The proportion of N excreted as ammonia and urea was independent of water intake. Most individuals were ureotelic (n = 28), and only a few were ureo-ammonotelic (n = 3) or ammonotelic (n = 2). According to our nitrogen requirement hypothesis, apparent MNR (60 mg kg(-0.75) d(-1)) and truly digestible MNR (54 mg N kg(-0.75) d(-1)) were low. A decrease in urea excretion in low-nitrogen diets may result from urea recycling from liver to the gut functioning as a nitrogen salvage system in nectarivorous bats. This mechanism probably contributes to the low MNR found in Pallas's long-tongued bats.  相似文献   

19.
This study was conducted to investigate the effects of incorporation into pig diets of 20% of different co-products from the biofuel industries, which are rich in fibre, on animal growth performance, on nitrogen (N) and carbon (C) excretions, and on the subsequent ammonia volatilisation and methane production during the storage of slurry. Five experimental diets mainly based on wheat and soyabean meal were formulated: two control diets, a control high-protein (CHP) diet with 17.5% of crude protein (CP) and a control low-protein (CLP) diet with 14.0% of CP and three experimental diets with 20% of (i) dried distiller's grain with solubles (DDGS), (ii) sugar beet pulp (SBP) or (iii) fatty rapeseed meal (FRM). The animals used (20 castrated males) were housed individually in metabolism cages and fed one of the five diets (i.e. four pigs per diet). Urine and faeces were collected separately from each pig in order to measure nutrient digestibility and the excretory patterns of N and C. For each diet, ammonia volatilisation was measured from samples of slurry subsequently produced, over a 16-day storage period in a laboratory pilot scale system. The ultimate methane potential (B0, expressed in litres CH4/kg organic matter (OM)) was measured from the same slurry, for each diet, in anaerobic storage conditions over 100 days. The addition of sources of fibres to the diet decreased (P < 0.05) the animal growth performance by 13% and increased (P < 0.05) the amount of faeces excreted by 100%, whereas the amount of urine was not affected. For the high-fibre diets, there was a shift of N partitioning from urine to faeces, resulting in a much higher faecal N excretion (10 v. 5 g N/pig per day). Concurrently, the fibre enrichment in diets significantly increased (P < 0.05) the C content of the faeces by 68%. Ammonia emission from slurry was significantly reduced (P < 0.05) by 19% to 33% for the high-fibre diets, compared to the CHP diet. Ammonia emission was also reduced (P < 0.05) by 33% for the CLP compared to the CHP diet. B0 values ranged from 428 to 484 l CH4/kg OM. When these are expressed per pig and per day, the B0 from slurry was, on average, 70 l for the two control diets, and 121, 91 and 130 l for the slurry originating from the DDGS, SBP and FRM diets, respectively.  相似文献   

20.
The influence of urease activity on N distribution and losses after foliar urea application was investigated using wild-type and transgenic potato (Solanum tuberosum cv Désirée) plants in which urease activity was down-regulated. A good correlation between urease activity and (15)N urea metabolism (NH(3) accumulation) was found. The general accumulation of ammonium in leaves treated with urea indicated that urease activity is not rate limiting, at least initially, for the assimilation of urea N by the plant. It is surprising that there was no effect of urease activity on either N losses or (15)N distribution in the plants after foliar urea application. Experiments with wild-type plants in the field using foliar-applied (15)N urea demonstrated an initial rapid export of N from urea-treated leaves to the tubers within 48 h, followed by a more gradual redistribution during the subsequent days. Only 10% to 18% of urea N applied was lost (presumably because of NH(3) volatilization) in contrast to far greater losses reported in several other studies. The pattern of urease activity in the canopy was investigated during plant development. The activity per unit protein increased up to 10-fold with leaf and plant age, suggesting a correlation with increased N recycling in senescing tissues. Whereas several reports have claimed that plant urease is inducible by urea, no evidence for urease induction could be found in potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号